LINUX: Rute User’s Tutorial and Exposition

Paul Sheer

August 14, 2001

Pages up to and including this page are not included by Prentice Hall.

“The reason we don’t sell billions and billions of Guides,” continued Harl,
after wiping his mouth, “is the expense. What we do is we sell one Guide billions
and billions of times. We exploit the multidimensional nature of the Universe to
cut down on manufacturing costs. And we don’t sell to penniless hitchhikers.
What a stupid notion that was! Find the one section of the market that, more or
less by definition, doesn’t have any money, and try to sell to it. No. We sell to
the affluent business traveler and his vacationing wife in a billion, billion different
futures. This is the most radical, dynamic and thrusting business venture in the
entire multidimensional infinity of space-time-probability ever.”

Ford was completely at a loss for what to do next.

“Look,” he said in a stern voice. But he wasn’t certain how far saying things
like “Look” in a stern voice was necessarily going to get him, and time was not on
his side. What the hell, he thought, you're only young once, and threw himself out
of the window. That would at least keep the element of surprise on his side.

In a spirit of scientific inquiry he hurled himself out of the window again.

Douglas Adams
Mostly Harmless

Strangely, the thing that least intrigued me was how they’d managed to get it
all done. I suppose I sort of knew. If I'd learned one thing from traveling, it was
that the way to get things done was to go ahead and do them. Don’t talk about
going to Borneo. Book a ticket, get a visa, pack a bag, and it just happens.

Alex Garland
The Beach

Vi

Chapter Summary

O© 0 N & Ul b= W N =

N NN NNNDRN B 2 R 2o e e e e
N Ul R W INR © O ® N1 & U bk WN R ©

Introduction 1
Computing Sub-basics L 00 5
PCHardware e 15
BasicCommands 25
Regular Expressions 49
Editing TextFiles 53
Shell Scripting 61
Streams and sed — The Stream Editor 73
Processes, Environment Variables 81
Mail 97
User Accounts and Ownerships 101
Using Internet Services 111
LINUXResources 117
Permission and Modification Times 123
Symbolicand Hard Links 127
Pre-installed Documentation 131
Overview of the UNIX Directory Layout 135
UNIXDevices e 141
Partitions, File Systems, Formatting, Mounting 153
Advanced Shell Scripting Lo oL 171
System Servicesand 1pd L 193
Trivial IntroductiontoC 207
Shared Libraries 233
Source and Binary Packages 237
IntroductiontoIP 247
TCPandUDP. 263

vii

Chapter Summary

DNS and Name Resolution 273
Network File System, NFS 285
Services Running Underinetd 291
eximandsendmail 299
lilo,initrd,andBooting 317
init, ?getty,and UNIXRunlLevels 325
Sending Faxes 333
uucpanduux e 337
The LINUX File System Standard 347
httpd — Apache Web Server 389
crondandatd 409
postgres SQL Server 413
smbd — Samba NT Server 425
named — Domain Name Server 437
Point-to-Point Protocol — Dialup Networking 453
The LINUX Kernel Source, Modules, and Hardware Support 463
The XWindow System 485
UNIX Security 511
Lecture Schedule 525
LPI Certification Cross-Reference 531
RHCE Certification Cross-Reference 543
LINUX Advocacy FAQ oo 551
The GNU General Public License Version2 573

581

viii

Contents

Acknowledgments

1 Introduction
1.1 WhatThis BookCovers
12 Read ThisNext...t
1.3 What DoINeed to Get Started?
1.4 More About ThisBook
1.5 I Get Frustrated with UNIX Documentation That I Don’t Understand . .
1.6 LPIand RHCE Requirements
1.7 Not RedHat: RedHat-like
1.8 UpdatesandErrata

2 Computing Sub-basics

21
2.2
23
24
25
2.6
2.7
2.8
29

2.10 Directories

PC Hardware
3.1 Motherboard
3.2 Master/SlaveIDE

Binary, Octal, Decimal, and Hexadecimal,
Files e
Commands e
Login and Password Change
Listing Files
Command-Line EditingKeys
ConsoleKeys
CreatingFiles
Allowable Characters for File Names

iX

XXX1

10
10
11
12
12
12

Contents

33 CMOS . . . 20
34 SerialDevices 20
35 Modems 23
Basic Commands 25
4.1 The 1s Command, Hidden Files, Command-Line Options 25
42 ErrorMessages e 26
4.3 Wildcards, Names, Extensions, and glob Expressions 29

431 Filenaming L L 29

432 Globexpressions 32
44 Usage Summaries and the Copy Command 33
45 Directory Manipulation 34
4.6 Relative vs. Absolute Pathnames 34
47 System ManualPages 35
48 SysteminfoPages. 36
49 Some BasicCommands 36
410 ThemcFileManager 40
411 Multimedia Commands forFun 40
4.12 Terminating Commands 41
413 Compressed Files 41
414 SearchingforFiles 42
415 Searching WithinFiles 43
4.16 Copying to MS-DOS and Windows Formatted Floppy Disks 44
417 Archivesand Backups L. 45
4.18 The PATH Where Commands Are Searched For 46
419 The--Option 47
Regular Expressions 49
51 Overview 49
52 The fgrepCommand 51
5.3 Regular Expression \{ \} Notation 51
54 +?2\<\> () | Notation v 52
5.5 Regular Expression Subexpressions 52

X

Contents

6 Editing Text Files

6.1 Vi e e e e e
6.2 Syntax Highlighting
6.3 Editors
6.3.1 Cooledit e
632 viandwvim e
6.33 Emacs e e
6.34 Othereditors i

7 Shell Scripting

71 Imtroduction
72 Looping: the while and until Statements.
7.3 Looping: the for Statement
74 Dbreaking Out of Loops and continueing
7.5 Looping Over Glob Expressions
7.6 ThecaseStatement
7.7 Using Functions: the function Keyword
7.8 Properly Processing Command-Line Args: shift
7.9 More on Command-Line Arguments: $@and $0
7.10 Single Forward Quote Notation.
7.11 Double-Quote Notation
7.12 Backward-Quote Substitution L.

8 Streams and sed — The Stream Editor

8.1 Introduction
82 Tutorial
83 PipingUsing | Notation
8.4 A Complex Piping Example
8.5 Redirecting Streamswith>s
8.6 Using sedtoEditStreams.
8.7 Regular Expression Subexpressions
8.8 Inserting and Deleting Lines

9 Processes, Environment Variables

9.1 Introduction
9.2 ps—ListRunning Processes
9.3 ControllingJobs.

X1

61
61
62
63
65
66
66
67
68
70
70
70
71

73
73
74
74
75
75
77
77
79

Contents

10

11

12

9.4 Creating Background Processes
9.5 killingaProcess, Sending Signals
9.6 Listof CommonSignals
9.7 Niceness of Processes, Scheduling Priority
9.8 Process CPU/Memory Consumption, top

9.9 Environments of Processes

Mail
10.1 Sending and Reading Mail
10.2 The SMTP Protocol — Sending Mail Raw toPort 25

User Accounts and Ownerships
11.1 FileOwnerships
11.2 The Password File /etc/passwd
11.3 Shadow Password File: /etc/shadow
11.4 The groups Command and /etc/group oo oo ..
11.5 Manually Creatinga User Account
11.6 Automatically: useradd and groupadd
11.7 UserLogins
11.7.1 The logincommand
11.7.2 Thesetuser,sucommand
11.7.3 The who, w, and users commands to see who is logged in
11.7.4 The id command and effective UID
11.7.5 Userlimits

Using Internet Services
12.1 ssh,nottelnetorrlogin,
122 repand sCp . . . e e
123 rsh .o
124 FTIP o
125 finger o e e
12.6 Sending Filesby Email
12.6.1 uuencodeanduudecode,
12.6.2 MIME encapsulation.

xii

Contents

13 LINUX Resources

13.1 FTP Sites and the sunsiteMirror
132 HTTP —Web Sites e
13.3 SourceForge
134 Mailing Lists

14

15

16

17

18

13.4.1
13.4.2

Majordomo and Listserv

*orequest L. oL

13.5 Newsgroups oo

13.6

RFCs

Permission and Modification Times

14.1 ThechmodCommand
142 TheumaskCommand
14.3 Modification Times: stat it

Symbolic and Hard Links
15.1 SoftLinks
152 HardLinks

Pre-installed Documentation

Overview of the UNIX Directory Layout

171 Packages
17.2 UNIX Directory Superstructure
17.3 LINUXonaSingle Floppy Disk

UNIX Devices

18.1
18.2
18.3
18.4
18.5

DeviceFiles

Block and Character Devices

Major and Minor Device Numbers

Common Device Names ittt
dd, tar, and Tricks with Block Devices

18.5.1
18.5.2
18.5.3
18.5.4
18.5.5

Creating boot disks from bootimages
Erasingdisks
Identifying dataonrawdisks.
Duplicatingadisk
Backinguptofloppies

117
117
118
119
119
119
120
120
121

123
123
125
126

127
127
129

131

135
135
136
138

Contents

18.5.6 Tapebackups 149
18.5.7 Hiding program output, creating blocks of zeros 149
18.6 Creating Devices with mknod and /dev/MAKEDEV 150
Partitions, File Systems, Formatting, Mounting 153
19.1 The Physical Disk Structure 153
19.1.1 Cylinders, heads,andsectors 153
19.1.2 Large Block Addressing 154
19.1.3 Extended partitions 154
19.2 PartitioningaNew Disk 155
19.3 Formatting Devices 160
19.31 Filesystems L L Lo 160
1932 mke2fs 160
19.3.3 Formatting floppies and removable drives 161
19.3.4 Creating MS-DOS floppies 162
19.3.5 mkswap, swapon,and swapoff 162
194 DeviceMounting o 163
1941 MountingCD-ROMs 163
19.4.2 Mounting floppy disks oo oL 164
19.4.3 Mounting Windows and NT partitions 164
19.5 File System Repair: fsck 165
19.6 File System ErrorsonBoot. o oL 165
19.7 Automatic Mounts: fstab 166
19.8 Manually Mounting /proc 167
19.9 RAMand Loopback Devices 167
19.9.1 Formatting a floppy insideafile 167
1992 CD-ROMfiles. 168
1910 Remounting 168
1911 Disk sSync . . o v oo o 169
Advanced Shell Scripting 171
20.1 Listsof Commands 171
20.2 Special Parameters: $2, $*,...o 172
203 Expansion 173
204 Built-inCommands. 175
20.5 Trapping Signals —the trap Command 176

Xiv

Contents

20.6 Internal Settings —the set Command 177
20.7 Useful Scripts and Commands 178
20.7.1 chroot e 178
20.72 ifconditionalso 179
20.7.3 patchingand diffing 179
20.7.4 Internet connectivitytest 180
20.7.5 Recursivegrep(search), 180
20.7.6 Recursivesearchandreplace 181
20.7.7 cut and awk — manipulating text file fields 182
20.7.8 Calculationswithbc 183
20.7.9 Conversion of graphics formats of many files 183
20.7.10 Securely erasing files L L L L 184
20.7.11 Persistent background processes 184
20.7.12 Processing the process list 185

20.8 Shell Initialization 186
20.8.1 Customizing the PATH and LD_LIBRARY PATH 187

209 FileLocking 187
209.1 Lockingamailboxfile, 188
209.2 Lockingover NFS 190
20.9.3 Directory versus filelocking 190
20.9.4 Lockinginside C programs 191

21 System Services and 1pd 193
211 USING 1P .« o v vttt e 193
21.2 Downloading and Installing 194
21.3 LPRngvs. Legacy lpr—-0.nm 195
214 PackageElements. 195
21.41 Documentationfiles 195
21.4.2 Web pages, mailing lists, and download points 195
21.4.3 User programst v it i 196
21.44 Daemon and administrator programs 196
2145 Configurationfiles, .. 196
21.4.6 Service initializationfiles 196
2147 Spoolfiles 197
2148 Logfiles 198
21.49 Logfilerotation 198

XV

Contents

22

21.4.10 Environment variables, .. 199
215 TheprintcapFileinDetail 199
21.6 PostScript and the Print Filter 200
21.7 AccessControl 202
21.8 Printing Troubleshooting 203
219 Useful Programs 204
21.9.1 printtool e 204
21.9.2 apsfilter o i i i e e e 204
21.93 mpage e e e 204
21.9.4 psutils . . . i e e e 204
21.10 Printing to Things Besides Printers 205
Trivial Introduction to C 207
221 CFundamentals 208
22.1.1 ThesimplestCprogram. 208
22.1.2 Variablesandtypes 209
22.1.3 Functions 210
2214 for,while,if,and switchstatements 211
22.1.5 Strings, arrays, and memory allocation 213
22.1.6 Stringoperations L 215
22.1.7 Fileoperations 217
22.1.8 Reading command-line arguments inside C programs 218
22.1.9 A more complicated example 218
22.1.10 #include statements and prototypes 220
22111 Ccomments. 221
22112 #defineand #if —Cmacros 222
22.2 Debugging with gdb and strace 223
22271 gdb .. 223
2222 Examining corefiles 227
2223 SLraceo 227
223 ClLibraries. 227
224 CProjects—Makefiles 230
2241 Completing our example Makefile 231
22.42 Puttingitalltogether 231

XVi

Contents

23

24

25

Shared Libraries

23.1 Creating DLL .soFiles
232 DLL Versioning i
23.3 Installing DLL .soFiles

Source and Binary Packages

241 Building GNU Source Packages.

242 RedHat and Debian Binary Packages
2421 Packageversioning
24.2.2 Installing, upgrading, and deleting
2423 Dependencies.
2424 Packagequeries L
2425 Filelistsand filequeries
24.2.6 Package verification
2427 Specialqueries L o o
24.2.8 dpkg/apt VEIrSUS rPM . . « v v v v v v vttt e e e e e e e e

243 SourcePackages L.

Introduction to IP
25.1 Internet Communication.
252 Special IP Addresses
25.3 Network Masksand Addresses
254 ComputersonalLAN
25.5 Configuring Interfaces
25.6 ConfiguringRouting
25.7 Configuring Startup Scripts L L oL
25.7.1 RedHatnetworkingscripts
25.7.2 Debian networking scripts L L L
25.8 Complex Routing —a Many-Hop Example
25.9 Interface Aliasing — Many IPs on One Physical Card
25.10 Diagnostic Utilities L Lo L.
25101 pIing ¢ o oo i e e e
25.102traceroute
25103 tcpdump . ..o e e e e e e e e e

Contents

26 TCP and UDP

27

28

29

26.1
26.2
26.3
264
26.5

The TCPHeader
ASample TCP Session
User Datagram Protocol (UDP)
/etc/servicesFile o L.

Encrypting and Forwarding TCP

DNS and Name Resolution

271
27.2

27.3
27.4
27.5
27.6
27.7

27.8

Top-Level Domains (TLDs)
Resolving DNS Names to IP Addresses
27.2.1 The Internet DNS infrastructure
27.2.2 The name resolution process
Configuring Your Local Machine
Reverse Lookups
Authoritative foraDomain
The host, ping, and whois Command
The nslookupCommand
27.7.1 NS,MX,PTR,Aand CNAME records
ThedigCommand

Network File System, NFS

28.1
28.2
28.3
28.4
28.5

Software e
Configuration Example
Access Permissions
Security o
Kemmel NFS,

Services Running Under inetd

29.1
29.2

29.3
29.4
29.5

The inetdPackage
Invoking Services with /etc/inetd.conf
29.2.1 Invoking a standalone service
29.2.2 Invoking an inetdservice

29.2.3 Invoking an inetd “TCP wrapper” service

29.2.4 Distribution conventions
Various Service Explanations
The xinetd Alternative
Configuration Files

Contents

30

31

29.5.1 Limitingaccess 296
29.6 Security 297
exim and sendmail 299
30.1 Introduction 299
30.1.1 Howmailworks 299
30.1.2 Configuring a POP/IMAPserver 301
30.1.3 Whyexim? 301
30.2 eximPackageContents 301
30.3 eximConfigurationFile 302
30.3.1 Globalsettings 303
3032 Transports 304
30.3.3 Directors e e 305
3034 Routers e 306
304 Full-blown Mailserver 306
30.5 Shell Commands for exim Administration 308
306 TheQueue i e 309
30.7 /etc/aliases for Equivalent Addresses 310
30.8 Real-Time Blocking List — Combating Spam 311
30.8.1 Whatisspam? 311
30.8.2 Basicspamprevention. 312
30.8.3 Real-timeblockinglist 313
30.8.4 Mail administrator and user responsibilities 313
309 Sendmail 314
lilo, initrd, and Booting 317
311 Usage. o 317
312 Theory 318
31.2.1 Kernelbootsequence 318
31.2.2 Masterbootrecord 318
31.2.3 Booting partitions o L 318
31.24 Limitations 319
313 lilo.confandtheliloCommand 319
314 Creating Boot Floppy Disks 321
31.5 SCSI Installation Complications and initrd 322
31.6 Creatingan initrdImage 322
31.7 Modifying 1ilo.confforinitrd 324
31.8 Usingmkinitrd 324

Xix

Contents

32 init, ?getty, and UNIX Run Levels 325
32.1 init —theFirstProcess 325
322 Jetc/inittab. e 326

32.2.1 Minimal configuration. 326
3222 Rereading inittab 328
32.2.3 The respawning too fasterror 328
323 UsefulRunLevels, 328
324 gettylnvocation. 329
325 BootupSummary 329
32.6 Incoming Faxes and Modem Logins 330
32.6.1 mgetty with character terminals 330
32.6.2 mgettylogfiles L L . 330
32.6.3 mgettywithmodems 330
32.64 mgettyreceivingfaxes 331

33 Sending Faxes 333
33.1 Fax ThroughPrinting 333
33.2 Setgid WrapperBinary L. 335

34 uucp and uux 337
341 Command-Line Operation 338
342 Configuration 338
343 ModemDial 341
344 tty/UUCPLockFiles i i 342
345 Debugginguucpo 343
346 Usinguuxwithexim 343
34.7 Scheduling Dialouts 346

35 The LINUX File System Standard 347
35.1 Introduction 349

35.1.1 Purpose 349
35.1.2 Conventions oo e 349
352 TheFilesystem 349
35.3 TheRootFilesystem 351
35.3.1 Purpose 351
35632 Requirements 352
35.3.3 SpecificOptions L o 352

XX

Contents

35.4

35.5

35.3.4 /bin: Essential user command binaries (for use by all users) . . 353
35.3.5 /boot : Static files of the bootloader 354
35.3.6 /dev:Devicefiles 355
35.3.7 /etc: Host-specific system configuration 355
35.3.8 /home : User home directories (optional) 358
35.3.9 /lib : Essential shared libraries and kernel modules 358
35.3.10 /lib<qual> : Alternate format essential shared libraries (optional)359
35.3.11 /mnt : Mount point for a temporarily mounted filesystem 359
35.3.12 /opt : Add-on application software packages 360
35.3.13 /root : Home directory for the root user (optional) 361
35.3.14 /sbin : System binaries 361
35.3.15 /tmp : Temporary files, 362
The /usr Hierarchy 362
35.4.1 Purpose 362
3542 Requirements 363
35.4.3 SpecificOptions L 363
35.44 /usr/X11R6: X Window System, Version 11 Release 6 (optional) 363
35.4.5 /usr/bin:Mostusercommands 364
35.4.6 /usr/include : Directory for standard include files. 365
35.4.7 /usr/lib : Libraries for programming and packages 365
35.4.8 /usr/lib<qual> : Alternate format libraries (optional) 366
35.49 /usr/local: Local hierarchy 366
35.4.10 /usr/sbin : Non-essential standard system binaries 367
35.4.11 /usr/share : Architecture-independentdata 367
35.4.12 /usr/src : Source code (optional) 373
The /varHierarchy 373
355.1 Purpose e 373
356,52 Requirements 373
35.5.3 SpecificOptions o 374
35.5.4 /var/account : Process accounting logs (optional) 374
35.5.5 /var/cache: Application cachedata 374
35.5.6 /var/crash : System crash dumps (optional) 376
35.5.7 /var/games : Variable game data (optional) 376
35.5.8 /var/lib: Variable state information 377
355.9 /var/lock:Lockfiles 379
35.5.10 /var/log : Log files and directories 379

xxi

Contents

35.5.11 /var/mail : User mailbox files (optional) 379
35.5.12 /var/opt: Variable data for /opt, 380
35.5.13 /var/run : Run-time variabledata 380
35.5.14 /var/spool : Applicationspooldata. 381

35.5.15 /var/tmp : Temporary files preserved between system reboots . 382
35.5.16 /var/yp : Network Information Service (NIS) database files (op-

tional) 382

35.6 Operating System Specific Annex 382
35.6.1 Linux 382

35.7 Appendix 386
35.71 The FHSmailinglist 386
35.7.2 Backgroundofthe FHS 386
35.7.3 General Guidelines 386
35.74 Scope 386
35.7.5 Acknowledgments L 387
35.7.6 Contributors 387

36 httpd — Apache Web Server 389
36.1 WebServerBasics. 389
36.2 Installing and Configuring Apache 393
36.2.1 Sample httpd.conf 393
36.2.2 Commondirectives 394
36.2.3 User HTML directories 398
3624 Aliasing 398
36.25 Fancyindexes., ..., 399
36.2.6 Encoding and language negotiation 399
36.2.7 Server-sideincludes—SSI 400
36.2.8 CGI— Common Gateway Interface 401
3629 Formsand CGI 403
36.2.10Setuid CGIs e 405
36.2.11 Apache modulesand PHP 406
36.2.12Virtualhosts 407

37 crond and atd 409
37.1 /etc/crontab ConfigurationFile 409
372 Theat Command, 411
373 OthercronPackages 412

Contents

38 postgres SQL Server 413
38.1 Structured Query Language 413
38.2 POSLgIres . v . v i e e e e e e e 414
38.3 postgresPackageContent. 414
38.4 Installing and Initializing postgres 415
38.5 Database Querieswithpsqgl 417
38.6 IntroductiontoSQL 418

38.6.1 Creatingtables 418
38.6.2 Listingatable., 419
38.6.3 Addingacolumn. 420
38.6.4 Deleting (dropping)acolumn 420
38.6.5 Deleting (dropping)atable 420
38.6.6 Inserting rows, “object relational” 420
38.6.7 Locatingrows. 421
38.6.8 Listing selected columns, and the oidcolumn 421
38.6.9 Creating tables from othertables 421
38.6.10Deletingrows 421
38.6.11Searches e 422
38.6.12 Migrating from another database; dumping and restoring tables
asplaintext L Lo 422
38.6.13 Dumping an entire database 423
38.6.14 More advanced searches 423
38.7 Real Database Projects 423

39 smbd — Samba NT Server 425
39.1 Samba: An Introduction by Christopher R. Hertel 425
39.2 ConfiguringSamba L L L o 431
39.3 ConfiguringWindows 433
39.4 Configuring a Windows Printer 434
39.5 Configuring swat 434
39.6 WindowsNT Caveats 435

40 named — Domain Name Server 437
40.1 Documentation 0. 438
40.2 Configuringbind 438

40.2.1 Example configuration 438
40.2.2 Starting thenameserver 443

xxiii

Contents

41

42

40.2.3 Configurationindetail
40.3 Round-Robin Load-Sharing
404 Configuring named for DialupUse
40.4.1 Example caching nameserver
40.4.2 DynamicIPaddresses
40.5 Secondary or Slave DNS Servers

Point-to-Point Protocol — Dialup Networking

411 BasicDialup L
41.1.1 Determining your chat script
4112 CHAPandPAP.
41.1.3 Runningpppd

41.2 Demand-Dial, Masquerading

413 DialupDNS

414 Dial-inServers

415 Usingtcpdumpo oo

41.6 ISDN Instead of Modems

The LINUX Kernel Source, Modules, and Hardware Support

42.1 Kernel Constitution
422 Kernel VersionNumbers.
42.3 Modules, insmod Command, and Siblings
42 4 Interrupts, I/O Ports, and DMA Channels
42.5 Module Options and Device Configuration
42.5.1 Five ways to pass options toamodule
4252 Module documentation sources
42.6 Configuring Various Devices
42.6.1 Soundandpnpdump
42.6.2 Parallelport.
42.6.3 NIC — Ethernet, PCI,andoldISA
42.6.4 PClvendorIDand devicelD
4265 PClandsound
42.6.6 Commercial sound drivers
42.6.7 The ALSA sound project
42.6.8 Multiple Ethernetcards
4269 SCSIdisks

Contents

43

42.6.10 SCSI terminationand cooling 477
42611 CDwriters 477
42.6.12Serial devices Lo 479
427 Modem Cards e 480
428 MoreonLILO: Options 481
429 BuildingtheKernel L L L oo 481
429.1 Unpacking and patching 481
4292 Configuring 482
42.10 Using Packaged Kernel Source 483
4211 Building, Installing 0. 483
The X Window System 485
431 TheXProtocol 485
43.2 Widget Libraries and Desktops 491
4321 Background L L L L o 491
4322 Qt .. 492
4323 Gtk 492
4324 GNUStep 493
433 XFree86 e 493
43.3.1 Running X and key conventions 493
43.3.2 Running Xutilities L. 494
43.3.3 RunningtwoXsessions 495
43.3.4 Running a window manager 495
43.3.5 Xaccess control and remotedisplay 496
43.3.6 Xselections, cutting, and pasting 497
434 The X Distribution 497
43.5 XDocumentation L o 497
435.1 Programming 498
43.5.2 Configuration documentation 498
4353 XFree86website L o o 498
436 XConfiguration L 499
43.6.1 Simple 16-color X'server. 499
43.6.2 Plug-and-Play operation 500
43.6.3 Proper X configuration 501
437 Visuals 504
43.8 The startxand xinit Commands 505

XXV

Contents

439 LoginScreen.
43.10 X Font Naming Conventions
43.11 Font Configuration
4312TheFontServer

44 UNIX Security

441 Common Attacks L L L oL
44.1.1 Buffer overflow attacks
4412 Setuid programs
441.3 Network client programs
4414 /tmp file vulnerability
4415 Permissionproblems
44.1.6 Environmentvariables
4417 Passwordsniffing
441.8 Passwordcracking
4419 Denial of serviceattacks

442 Other Typesof Attack

443 Counter Measures
44.3.1 Removing known risks: outdated packages

44.3.2 Removing known risks: compromised packages

44.3.3 Removing known risks: permissions
443.4 Password management
44.3.5 Disabling inherently insecure services
44.3.6 Removing potential risks: network
44.3.7 Removing potential risks: setuid programs
44.3.8 Making life difficult
44.3.9 Custom security paradigms
443.10 Proactivecunning
444 ImportantReading
445 Security Quick-Quizo 0L
44.6 Security Auditing oo oo oo

A Lecture Schedule

A.l1 Hardware Requirements
A2 StudentSelection
A3 LectureStyle.

Contents

E

LPI Certification Cross-Reference
B.1 Exam Details for 101
B.2 Exam Details for102

RHCE Certification Cross-Reference

C.1 RHO020, RH030, RH033, RH120, RH130,and RH133
C.2 RH300 e e e e
C.3 RH220 (RH253 Part1) ittt et
CA4 RH250 (RH253DPart2) . . . oooee e

LINUX Advocacy FAQ

D.1 LINUXOVerview i i it e e e e e e e e e e e e e e e
D.2 LINUX,GNU, and Licensing
D.3 LINUX Distributions
D.4 LINUXSupport
D.5 LINUX Compared to Other Systems
D.6 Migrating to LINUX
D.7 Technical e

The GNU General Public License Version 2

Index

XXVii

Contents

XXV1iil

Preface

When I began working with GNU/LINUX in 1994, it was straight from the DOS
world. Though UNIX was unfamiliar territory, LINUX books assumed that anyone
using LINUX was migrating from System V or BSD—systems that I had never heard
of. It is a sensible adage to create, for others to share, the recipe that you would most
like to have had. Indeed, I am not convinced that a single unifying text exists, even
now, without this book. Even so, I give it to you desperately incomplete; but there is
only so much one can explain in a single volume.

I hope that readers will now have a single text to guide them through all facets
of GNU/LINUX.

XXix

Contents

XXX

Acknowledgments

A special thanks goes to my technical reviewer, Abraham van der Merwe, and my
production editor, Jane Bonnell. Thanks to Jonathan Maltz, Jarrod Cinman, and Alan
Tredgold for introducing me to GNU/ Linux back in 1994 or so. Credits are owed to all
the Free software developers that went into IXIgX, TeX, GhostScript, GhostView, Au-
totrace, XFig, XV, Gimp, the Palatino font, the various IXTEX extension styles, DVIPS,
DVIPDFM, ImageMagick, XDVI, XPDF, and LaTeX2HTML without which this docu-
ment would scarcely be possible. To name a few: John Bradley, David Carlisle, Eric
Cooper, John Cristy, Peter Deutsch, Nikos Drakos, Mark Eichin, Brian Fox, Carsten
Heinz, Spencer Kimball, Paul King, Donald Knuth, Peter Mattis, Frank Mittelbach,
Ross Moore, Derek B. Noonburg, Johannes Plass, Sebastian Rahtz, Chet Ramey, Tomas
Rokicki, Bob Scheifler, Rainer Schoepf, Brian Smith, Supoj Sutanthavibul, Herb Swan,
Tim Theisen, Paul Vojta, Martin Weber, Mark Wicks, Masatake Yamato, Ken Yap, Her-
man Zapf.

Thanks to Christopher R. Hertel for contributing his introduction to Samba.

An enormous thanks to the GNU project of the Free Software Foundation, to the count-
less developers of Free software, and to the many readers that gave valuable feedback
on the web site.

XXX1

Acknowledgments

XXXii

Chapter 1

Introduction

Whereas books shelved beside this one will get your feet wet, this one lets you actually
paddle for a bit, then thrusts your head underwater while feeding you oxygen.

1.1 What This Book Covers

This book covers GNUZP / LINUX{) system administration, for popular distributions
like RedHat and Debian(0, as a tutorial for new users and a reference for advanced
administrators. It aims to give concise, thorough explanations and practical examples
of each aspect of a UNIX system. Anyone who wants a comprehensive text on (what is
commercially called) “LINUX” need look no further—there is little that is not covered
here.

1.2 Read This Next...

The ordering of the chapters is carefully designed to allow you to read in sequence
without missing anything. You should hence read from beginning to end, in order that
later chapters do not reference unseen material. I have also packed in useful examples
which you must practice as you read.

1.3 What Do I Need to Get Started?

You will need to install a basic LINUX{} system. A number of vendors now ship point-
and-click-install CDs: you should try get a Debian(© or “RedHat-like” distribution.

1

1.4. More About This Book 1. Introduction

One hint: try and install as much as possible so that when I mention a software pack-
age in this text, you are likely to have it installed already and can use it immediately.

Most cities with a sizable IT infrastructure will have a LINUX{} user group to help you
source a cheap CD. These are getting really easy to install, and there is no longer much
need to read lengthy installation instructions.

1.4 More About This Book

Chapter 16 contains a fairly comprehensive list of all reference documentation avail-
able on your system. This book supplements that material with a tutorial that is both
comprehensive and independent of any previous UNIX knowledge.

The book also aims to satisfy the requirements for course notes for a
GNU%;"? / LINUXL& training course. Here in South Africa, I use the initial chapters as

part of a 36-hour GNUZY / LINUX{} training course given in 12 lessons. The details of
the layout for this course are given in Appendix A.

Note that all “LINUX{}” systems are really composed mostly of GNUZ soft-
ware, but from now on I will refer to the GNU%Z system as “LINUX{}” in the way
almost everyone (incorrectly) does.

1.5 I Get Frustrated with UNIX Documentation
That I Don’t Understand

Any system reference will require you to read it at least three times before you get a reasonable
picture of what to do. If you need to read it more than three times, then there is probably
some other information that you really should be reading first. If you are reading a
document only once, then you are being too impatient with yourself.

It is important to identify the exact terms that you fail to understand in a docu-
ment. Always try to backtrack to the precise word before you continue.

Its also probably not a good idea to learn new things according to deadlines. Your
UNIX knowledge should evolve by grace and fascination, rather than pressure.

1.6 Linux Professionals Institute (LPI) and
RedHat Certified Engineer (RHCE) Requirements

The difference between being able to pass an exam and being able to do something
useful, of course, is huge.

1. Introduction 1.7. Not RedHat: RedHat-like

The LPI and RHCE are two certifications that introduce you to LINUX{}. This
book covers far more than both these two certifications in most places, but occasionally
leaves out minor items as an exercise. It certainly covers in excess of what you need to
know to pass both these certifications.

The LPI and RHCE requirements are given in Appendix B and C.

These two certifications are merely introductions to UNIX. To earn them, users
are not expected to write nifty shell scripts to do tricky things, or understand the subtle
or advanced features of many standard services, let alone be knowledgeable of the
enormous numbers of non-standard and useful applications out there. To be blunt:
you can pass these courses and still be considered quite incapable by the standards of
companies that do system integration. \System integration is my own term. It refers to the act
of getting LINUX to do nonbasic functions, like writing complex shell scripts; setting up wide-area dialup
networks; creating custom distributions; or interfacing database, web, and email services together.’\ In
fact, these certifications make no reference to computer programming whatsoever.

1.7 Not RedHat: RedHat-like

Throughout this book I refer to examples specific to “RedHat” and “Debian(®”. What
I actually mean by this are systems that use . rpm (redHat package manager) packages
as opposed to systems that use . deb (debian) packages—there are lots of both. This
just means that there is no reason to avoid using a distribution like Mandrake, which
is . rpm based and viewed by many as being better than RedHat.

In short, brand names no longer have any meaning in the Free software community.

(Note that the same applies to the word UNIX which we take to mean the com-
mon denominator between all the UNIX variants, including RISC, mainframe, and PC
variants of both System V and BSD.)

1.8 Updates and Errata

Corrections to this book will be posted on http://www.icon.co.za/"psheer/rute-errata.html.
Please check this web page before notifying me of errors.

1.8. Updates and Errata 1. Introduction

Chapter 2

Computing Sub-basics

This chapter explains some basics that most computer users will already be familiar
with. If you are new to UNIX, however, you may want to gloss over the commonly
used key bindings for reference.

The best way of thinking about how a computer stores and manages information
is to ask yourself how you would. Most often the way a computer works is exactly
the way you would expect it to if you were inventing it for the first time. The only
limitations on this are those imposed by logical feasibility and imagination, but almost
anything else is allowed.

2.1 Binary, Octal, Decimal, and Hexadecimal

When you first learned to count, you did so with 10 digits. Ordinary numbers (like
telephone numbers) are called “base ten” numbers. Postal codes that include letters
and digits are called “base 36” numbers because of the addition of 26 letters onto the
usual 10 digits. The simplest base possible is “base two” which uses only two dig-
its: 0 and 1. Now, a 7-digit telephone number has 10 x 10 x 10 x 10 x 10 x 10 x 10 =
7 digits
107 = 10,000,000 possible combinations. A postal code with four characters has
36" = 1,679,616 possible combinations. However, an 8-digit binary number only has
28 = 256 possible combinations.

Since the internal representation of numbers within a computer is binary and
since it is rather tedious to convert between decimal and binary, computer scientists
have come up with new bases to represent numbers: these are “base sixteen” and
“base eight,” known as hexadecimal and octal, respectively. Hexadecimal numbers use

5

2.1. Binary, Octal, Decimal, and Hexadecimal 2. Computing Sub-basics

the digits 0 through 9 and the letters A through F, whereas octal numbers use only the
digits 0 through 7. Hexadecimal is often abbreviated as hex.

Consider a 4-digit binary number. It has 2 = 16 possible combinations and can
therefore be easily represented by one of the 16 hex digits. A 3-digit binary number
has 23 = 8 possible combinations and can thus be represented by a single octal digit.
Hence, a binary number can be represented with hex or octal digits without much
calculation, as shown in Table 2.1.

Table 2.1 Binary hexadecimal, and octal representation

Binary | Hexadecimal Binary | Octal
0000 0 000 0
0001 1 001 1
0010 2 010 2
0011 3 011 3
0100 4 100 4
0101 5 101 5
0110 6 110 6
0111 7 111 7
1000 8
1001 9
1010 A
1011 B
1100 C
1101 D
1110 E
1111 F

A binary number 01001011 can be represented in hex as 4B and in octal as 113 by
simply separating the binary digits into groups of four or three, respectively.

In UNIX administration, and also in many programming languages, there is of-
ten the ambiguity of whether a number is in fact a hex, decimal, or octal number. For
instance, a hex number 56 is 01010110, but an octal number 56 is 101110, whereas a
decimal number 56 is 111000 (computed through a more tedious calculation). To dis-
tinguish between them, hex numbers are often prefixed with the characters “0x”, while
octal numbers are prefixed with a “0”. If the first digit is 1 through 9, then it is a deci-
mal number that is probably being referred to. We would then write 0x56 for hex, and
056 for octal. Another representation is to append the letter H, D, O, or B (or h, d, o, b)
to the number to indicate its base.

UNIX makes heavy use of 8-, 16-, and 32-digit binary numbers, often representing
them as 2-, 4-, and 8-digit hex numbers. You should get used to seeing numbers like
Oxffff (or FFFFh), which in decimal is 65535 and in binary is 1111111111111111.

6

2. Computing Sub-basics 2.2. Files

2.2 Files

Common to every computer system invented is the file. A file holds a single contiguous
block of data. Any kind of data can be stored in a file, and there is no data that cannot
be stored in a file. Furthermore, there is no kind of data that is stored anywhere else
except in files. A file holds data of the same type, for instance, a single picture will be
stored in one file. During production, this book had each chapter stored in a file. It is
uncommon for different types of data (say, text and pictures) to be stored together in
the same file because it is inconvenient. A computer will typically contain about 10,000
files that have a great many purposes. Each file will have its own name. The file name
on a LINUX{} or UNIX machine can be up to 256 characters long.

The file name is usually explanatory—you might call a letter you wrote to your
friend something like Mary_Jones.letter (from now on, whenever you see the
typewriter font (A style of print: here is typewriter font', it means that those are words
that might be read off the screen of the computer). The name you choose has no mean-
ing to the computer and could just as well be any other combination of letters or digits;
however, you will refer to that data with that file name whenever you give an instruc-
tion to the computer regarding that data, so you would like it to be descriptive. It
is important to internalize the fact that computers do not have an interpretation for anything. A computer
operates with a set of interdependent logical rules. Interdependent means that the rules have no apex, in the
sense that computers have no fixed or single way of working. For example, the reason a computer has files
at all is because computer programmers have decided that this is the most universal and convenient way of
storing data, and if you think about it, it really isN

The data in each file is merely a long list of numbers. The size of the file is
just the length of the list of numbers. Each number is called a byte. Each byte con-
tains 8 bits. Each bit is either a one or a zero and therefore, once again, there are
2X2X2X2X2x2x2x2 = &5’6/ possible combinations. Hence a byte can only

8 bits 1 byte
hold a number as large as 255. There is no type of data that cannot be represented as a

list of bytes. Bytes are sometimes also called octets. Your letter to Mary will be encoded
into bytes for storage on the computer. We all know that a television picture is just a
sequence of dots on the screen that scan from left to right. In that way, a picture might
be represented in a file: that is, as a sequence of bytes where each byte is interpreted as
a level of brightness—o0 for black and 255 for white. For your letter, the convention is to
store an A as 65, a B as 66, and so on. Each punctuation character also has a numerical
equivalent.

A mapping between numbers and characters is called a character mapping or a
character set. The most common character set in use in the world today is the ASCII
character set which stands for the American Standard Code for Information Inter-
change. Table 2.2 shows the complete ASCII mappings between characters and their
hex, decimal, and octal equivalents.

2.3. Commands 2. Computing Sub-basics

Table 2.2 ASCII character set
[Oct Dec Hex Char [Oct Dec Hex Char | Oct Dec Hex Char [Oct Dec Hex Char |

000 0 00 NUL 040 32 20 SPACE | 100 64 40 @ 140 96 60

001 1 01 SOH 041 33 21 ! 101 65 41 A | 141 97 61 a
002 2 02 STX 042 34 22 " 102 66 42 B | 142 98 62 b
003 3 03 ETX 043 35 23 # 103 67 43 c 143 99 63 c
004 4 04 EOT 044 36 24 $ 104 68 44 D 144 100 o4 d
005 5 05 ENQ 045 37 25 s 105 69 45 E 145 101 65 e
006 6 06 ACK 046 38 26 & 106 70 46 F 146 102 66 f
007 7 07 BEL 047 39 27 4 107 71 47 G | 147 103 67 g
010 8 08 BS 050 40 28 (10 72 48 H | 150 104 68 h
011 9 09 HT 051 41 29) 111 73 49 I 151 105 69 i
012 10 OA LF 052 42 2A ~* 12 74 4A g | 152 106 6A
013 11 0B vr 053 43 2B + 113 75 4B K | 153 107 6B k
014 12 0C FF 054 44 2C , 114 76 4C 1. | 154 108 6C 1
015 13 0D CR 055 45 2D - 115 77 4D M | 155 109 6D m
0l6 14 OE SO 056 46 2E . 116 78 4E N | 156 110 6E n
017 15 OF SI 057 47 2F / 117 79 4F o | 157 1 6F o
020 16 10 DLE 060 48 30 0 120 80 50 P 160 112 70)
021 17 11 DC1 061 49 31 1 121 81 51 o | 161 113 71 q
022 18 12 DC2 062 50 32 2 122 82 52 R | 162 114 72 r
023 19 13 DC3 063 51 33 3 123 83 53 S 163 115 73 s
024 20 14 DC4 064 52 34 4 124 84 54 T | 164 116 74 t
025 21 15 NAK 065 53 35 5 125 8 55 U | 165 117 75 u
026 22 16 SYN 066 54 36 6 126 8 56 v | 166 118 76 v
027 23 17 ETB 067 55 37 7 127 87 57 w | 7 119 77 w
030 24 18 CAN 070 56 38 8 130 88 58 X | 170 120 78 x
031 25 19 EM 071 57 39 9 131 89 59 y | 171 121 79 y
032 26 1A SUB 072 58 3A : 132 90 5A 2z 172 122 7A 2z
033 27 1B ESC 073 59 3B ; 133 91 5B [173 123 7B {
034 28 1C FS 074 60 3C < 134 92 5C \ 174 124 7C |
035 29 1D GS 075 61 3D = 135 93 5D] 175 125 7D }
036 30 1E RS 076 62 3E > 136 94 5E - 176 126 7E -
037 31 1F us 077 63 3F ? 137 95 5F _ | 177 127 7F DEL

2.3 Commands

The second thing common to every computer system invented is the command. You
tell the computer what to do with single words typed into the computer one at a time.
Modern computers appear to have done away with the typing of commands by having
beautiful graphical displays that work with a mouse, but, fundamentally, all that is
happening is that commands are being secretly typed in for you. Using commands is
still the only way to have complete power over the computer. You don’t really know
anything about a computer until you come to grips with the commands it uses. Using
a computer will very much involve typing in a word, pressing =<, and then waiting
for the computer screen to spit something back at you. Most commands are typed in
to do something useful to a file.

2. Computing Sub-basics 2.4. Login and Password Change

2.4 Login and Password Change

Turn on your LINUX{) box. After a few minutes of initialization, you will see the lo-
gin prompt. A prompt is one or more characters displayed on the screen that you are
expected to follow with some typing of your own. Here the prompt may state the
name of the computer (each computer has a name—typically consisting of about eight
lowercase letters) and then the word login:. LINUX{\ machines now come with a
graphical desktop by default (most of the time), so you might get a pretty graphi-
cal login with the same effect. Now you should type your login name—a sequence of
about eight lower case letters that would have been assigned to you by your computer

administrator—and then press the Enter (or Return) key (that is, -).

A password prompt will appear after which you should type your password. Your
password may be the same as your login name. Note that your password will not be
shown on the screen as you type it but will be invisible. After typing your password,
press the Enter or Return key again. The screen might show some message and prompt
you for a log in again—in this case, you have probably typed something incorrectly
and should give it another try. From now on, you will be expected to know that the
Enter or Return key should be pressed at the end of every line you type in, analogous
to the mechanical typewriter. You will also be expected to know that human error is
very common; when you type something incorrectly, the computer will give an error
message, and you should try again until you get it right. It is uncommon for a person
to understand computer concepts after a first reading or to get commands to work on
the first try.

Now that you have logged in you will see a shell prompt—a shell is the place
where you can type commands. The shell is where you will spend most of your time
as a system administrator “Computer manager™\, but it needn’t look as bland as you
see now. Your first exercise is to change your password. Type the command passwd.
You will be asked for a new password and then asked to confirm that password. The
password you choose should consist of letters, numbers, and punctuation—you will
see later on why this security measure is a good idea. Take good note of your password
for the next time you log in. Then the shell will return. The password you have chosen
will take effect immediately, replacing the previous password that you used to log in.
The password command might also have given some message indicating what effect it
actually had. You may not understand the message, but you should try to get an idea
of whether the connotation was positive or negative.

When you are using a computer, it is useful to imagine yourself as being in dif-
ferent places within the computer, rather than just typing commands into it. After you
entered the passwd command, you were no longer in the shell, but moved into the
password place. You could not use the shell until you had moved out of the passwd
command.

2.5. Listing Files 2. Computing Sub-basics

2.5 Listing Files

Type in the command 1s. 1s is short for list, abbreviated to two letters like most other
UNIX commands. 1s lists all your current files. You may find that 1s does nothing,
but just returns you back to the shell. This would be because you have no files as yet.
Most UNIX commands do not give any kind of message unless something went wrong
(the passwd command above was an exception). If there were files, you would see
their names listed rather blandly in columns with no indication of what they are for.

2.6 Command-Line Editing Keys

The following keys are useful for editing the command-line. Note that UNIX has had a
long and twisted evolution from the mainframe, and the , and other keys may
not work properly. The following keys bindings are however common throughout
many LINUX{) applications:

Ctrl-a Move to the beginning of the line ().
Ctrl-e Move to the end of the line ().
Ctrl-h Erase backward ().

Ctrl-d Erase forward ().
Ctrl-f Move forward one character ().

Ctrl-b Move backward one character ().
Alt-f Move forward one word.

Alt-b Move backward one word.

Alt-Ctrl-f Erase forward one word.
Alt-Ctrl-b Erase backward one word.

Ctrl-p Previous command (up arrow).

Ctrl-n Next command (down arrow).

Note that the prefixes Alt for -, Ctrl for |, and Shift for |, mean to hold the

key down through the pressing and releasing of the letter key. These are known as key
modifiers. Note also, that the Ctrl key is always case insensitive; hence Ctrl-D (i.e. |

[osmn_]) and Ctrl-d (i.e.) are identical. The Alt modifier (i.e., .7) is

10

2. Computing Sub-basics 2.7. Console Keys

in fact a short way of pressing and releasing |(e=]| before entering the key combination;
hence Esc then f is the same as Alt-fF—UNIX is ditferent from other operating systems in
this use of Esc. The Alt modifier is not case insensitive although some applications will
make a special effort to respond insensitively. The Alt key is also sometimes referred to
as the Meta key. All of these keys are sometimes referred to by their abbreviations: for
example, C-a for Ctrl-a, or M-f for Meta-f and Alt-f. The Ctrl modifier is sometimes also
designated with a caret: for example, ~C for Ctrl-C.

Your command-line keeps a history of all the commands you have typed in. Ctrl-
p and Ctrl-n will cycle through previous commands entered. New users seem to gain
tremendous satisfaction from typing in lengthy commands over and over. Never type
in anything more than once—use your command history instead.

Ctrl-s is used to suspend the current session, causing the keyboard to stop re-
sponding. Ctrl-q reverses this condition.

Cirl-r activates a search on your command history. Pressing Ctrl-r in the middle
of a search finds the next match whereas Ctrl-s reverts to the previous match (although
some distributions have this confused with suspend).

The Tab command is tremendously useful for saving key strokes. Typing a par-
tial directory name, file name, or command, and then pressing Tab once or twice in
sequence completes the word for you without your having to type it all in full.

You can make Tab and other keys stop beeping in the irritating way that they do
by editing the file /et c/inputrc and adding the line

[set bell-style none]

and then logging out and logging in again. (More about this later.)

2.7 Console Keys

There are several special keys interpreted directly by the LINUX{} console or text mode
interface. The Cirl-Alt-Del combination initiates a complete shutdown and hardware
reboot, which is the preferred method of restarting LINUX[&.

The Ctrl-PgUp and Ctrl-PgDn keys scroll the console, which is very useful for
seeing text that has disappeared off the top of the terminal.

You can use Alt-F2 to switch to a new, independent login session. Here you can
log in again and run a separate session. There are six of these virtual consoles—Alt-
F1 through Alt-F6—to choose from; they are also called virtual terminals. If you are
in graphical mode, you will have to instead press Ctrl-Alt-F? because the Alt-F? keys
are often used by applications. The convention is that the seventh virtual console is
graphical, so Alt-F7 will always take you back to graphical mode.

11

2.8. Creating Files 2. Computing Sub-basics

2.8 Creating Files

There are many ways of creating a file. Type cat > Mary_Jones.letter and then
type out a few lines of text. You will use this file in later examples. The cat command
is used here to write from the keyboard into a file Mary_Jones.letter. At the end
of the last line, press one more time and then press . Now, if you type
1s again, you will see the file Mary_Jones.letter listed with any other files. Type
cat Mary_Jones.letter without the >. You will see that the command cat writes
the contents of a file to the screen, allowing you to view your letter. It should match
exactly what you typed in.

2.9 Allowable Characters for File Names

Although UNIX file names can contain almost any character, standards dictate that
only the following characters are preferred in file names:

A BCDEVFGHTIJKTLMNOPORU STUVWIXYZ
abcde fghijklmnopagrstuvw?zxy z
01 2 3 456 789 - = 7

Hence, never use other punctuation characters, brackets, or control characters to name
files. Also, never use the space or tab character in a file name, and never begin a file
name with a - character.

2.10 Directories

I mentioned that a system may typically contain 10,000 files. Since it would be cum-
bersome if you were to see all 10,000 of them whenever you typed 1s, files are placed
in different “cabinets” so that files of the same type are placed together and can be
easily isolated from other files. For instance, your letter above might go in a sepa-
rate “cabinet” with other letters. A “cabinet” in computer terms is actually called a
directory. This is the third commonality between all computer systems: all files go in
one or another directory. To get an idea of how directories work, type the command
mkdir letters, where mkdir stands for make directory. Now type 1s. This will
show the file Mary_Jones.letter as well as a new file, letters. The file letters
is not really a file at all, but the name of a directory in which a number of other files
can be placed. To go into the directory letters, you can type cd letters where cd
stands for change directory. Since the directory is newly created, you would not expect
it to contain any files, and typing 1s will verify such by not listing anything. You can
now create a file by using the cat command as you did before (try this). To go back

12

2. Computing Sub-basics 2.10. Directories

to the original directory that you were in, you can use the command cd .. where the
. . has the special meaning of taking you out of the current directory. Type 1s again
to verify that you have actually gone up a directory.

It is, however, bothersome that we cannot tell the difference between files and
directories. The way to differentiate is with the 1s -1 command. -1 stands for long
format. If you enter this command, you will see a lot of details about the files that
may not yet be comprehensible to you. The three things you can watch for are the file
name on the far right, the file size (i.e., the number of bytes that the file contains) in
the fifth column from the left, and the file type on the far left. The file type is a string
of letters of which you will only be interested in one: the character on the far left is
either a - or a d. A - signifies a regular file, and a d signifies a directory. The command
ls -1 Mary-Jones.letter will list only the single file Mary_Jones.letter and
is useful for finding out the size of a single file.

In fact, there is no limitation on how many directories you can create within
each other. In what follows, you will glimpse the layout of all the directories on the
computer.

Type the command cd /, where the / has the special meaning to go to the top-
most directory on the computer called the root directory. Now type 1s -1. The listing
may be quite long and may go off the top of the screen; in that case, try 1s -1 | less
(then use PgUp and PgDn, and press q when done). You will see that most, if not all, are
directories. You can now practice moving around the system with the cd command,
not forgetting that cd .. takes you up and cd / takes you to the root directory.

At any time you can type pwd (present working directory) to show the directory you
are currently in.

When you have finished, log out of the computer by using the 1ogout command.

13

2.10. Directories 2. Computing Sub-basics

14

Chapter 3

PC Hardware

This chapter explains a little about PC hardware. Readers who have built their own PC
or who have configuring myriad devices on Windows can probably skip this section.
It is added purely for completeness. This chapter actually comes under the subject of
Microcomputer Organization, that is, how your machine is electronically structured.

3.1 Motherboard

Inside your machine you will find a single, large circuit board called the motherboard
(see Figure 3.1). It is powered by a humming power supply and has connector leads to
the keyboard and other peripheral devices. yAnything that is not the motherboard, not the power
supply and not purely mechanical "\

The motherboard contains several large microchips and many small ones. The
important ones are listed below.

RAM Random Access Memory or just memory. The memory is a single linear sequence
of bytes that are erased when there is no power. It contains sequences of simple
coded instructions of one to several bytes in length. Examples are: add this num-
ber to that; move this number to this device; go to another part of RAM to get
other instructions; copy this part of RAM to this other part. When your machine
has “64 megs” (64 megabytes), it has 64 x 1024 x 1024 bytes of RAM. Locations
within that space are called memory addresses, so that saying “memory address
1000” means the 1000th byte in memory.

ROM A small part of RAM does not reset when the computer switches off. It is called
ROM, Read Only Memory. It is factory fixed and usually never changes through
the life of a PC, hence the name. It overlaps the area of RAM close to the end of

15

3. PC Hardware

3.1. Motherboard

dnp sonD

1078 VSI

1018 [D

Arepeq SOND

10109UU0D
y3r—remod /1oxead

PIed VOA

10d oV

VI dINT9

101 NV

uoqqut aatIp Addor.g

193008

10J1UOW YOA

193205 F(J] Arepuodag

uoqqu 5T Arewrig

110d [er1ag

110d [oqrere

10d ggn
9500S PreoqAay
pue asnojA

J0300UU0d tomod

PIEOqISION

Figure 3.1 Partially assembled motherboard

16

3. PC Hardware 3.1. Motherboard

the first megabyte of memory, so that area of RAM is not physically usable. ROM
contains instructions to start up the PC and access certain peripherals.

CPU Central Processing Unit. It is the thing that is called 80486, 80586, Pentium, or
whatever. On startup, it jumps to memory address 1040475 (OxFEO5B) and starts
reading instructions. The first instructions it gets are actually to fetch more in-
structions from disk and give a Boot failure message to the screen if it finds
nothing useful. The CPU requires a timer to drive it. The timer operates at a high
speed of hundreds of millions of ticks per second (hertz). That’s why the machine
is named, for example, a “400 MHz” (400 megahertz) machine. The MHz of the
machine is roughly proportional to the number of instructions it can process per
second from RAM.

I/O ports Stands for Input/Output ports. The ports are a block of RAM that sits in par-
allel to the normal RAM. There are 65,536 I/ O ports, hence I/O is small compared
to RAM. I/O ports are used to write to peripherals. When the CPU writes a byte
to I/O port 632 (0x278), it is actually sending out a byte through your parallel
port. Most I/O ports are not used. There is no specific I/O port chip, though.

There is more stuff on the motherboard:

ISA slots ISA (eye-sah) is a shape of socket for plugging in peripheral devices like mo-
dem cards and sound cards. Each card expects to be talked to via an 1/O port (or
several consecutive I/O ports). What I/O port the card uses is sometimes con-
figured by the manufacturer, and other times is selectable on the card through
jumpers \Little pin bridges that you can pull off with your fingers™\ or switches on the
card. Other times still, it can be set by the CPU using a system called Plug and
Pray ~This means that you plug the device in, then beckon your favorite deity for spiritual as-
sistance. Actually, some people complained that this might be taken seriously—no, it’s a joke: the
real term is Plug 'n Play™\. or PnP. A card also sometimes needs to signal the CPU to
indicate that it is ready to send or receive more bytes through an I/O port. They
do this through 1 of 16 connectors inside the ISA slot. These are called Interrupt
Request lines or IRQ lines (or sometimes just Interrupts), so numbered 0 through
15. Like I/O ports, the IRQ your card uses is sometimes also jumper selectable,
sometimes not. If you unplug an old ISA card, you can often see the actual cop-
per thread that goes from the IRQ jumper to the edge connector. Finally, ISA
cards can also access memory directly through one of eight Direct Memory Access
Channels or DMA Channels, which are also possibly selectable by jumpers. Not
all cards use DMA, however.

In summary, the peripheral and the CPU need to cooperate on three things: the
I/0 port, the IRQ, and the DMA. If any two cards clash by using either the same I/O
port, IRQ number, or DMA channel then they won’t work (at worst your machine will
crash). ~yCome to a halt and stop responding™\

17

3.1. Motherboard 3. PC Hardware

“8-bit” ISA slots Old motherboards have shorter ISA slots. You will notice yours is a
double slot (called “16-bit” ISA) with a gap between them. The larger slot can
still take an older 8-bit ISA card: like many modem cards.

PCI slots PCI (pee-see-eye) slots are like ISA but are a new standard aimed at high-
performance peripherals like networking cards and graphics cards. They also
use an IRQ, I/O port and possibly a DMA channel. These, however, are auto-
matically configured by the CPU as a part of the PCI standard, hence there will
rarely be jumpers on the card.

AGP slots AGP slots are even higher performance slots for Accelerated Graphics Pro-
cessors, in other words, cards that do 3D graphics for games. They are also auto-
configured.

Serial ports A serial port connection may come straight from your motherboard to a
socket on your case. There are usually two of these. They may drive an external
modem and some kinds of mice and printers. Serial is a simple and cheap way to
connect a machine where relatively slow (less that 10 kilobytes per second) data
transfer speeds are needed. Serial ports have their own “ISA card” built into the
motherboard which uses I/O port 0x3F8-0x3FF and IRQ 4 for the first serial port
(also called COM1 under DOS/Windows) and I/O port 0x2F8-0x2FF and IRQ 3
for COM2. A discussion on serial port technology proceeds in Section 3.4 below.

Parallel port Normally, only your printer would plug in here. Parallel ports are, how-
ever, extremely fast (being able to transfer 50 kilobytes per second), and hence
many types of parallel port devices (like CD-ROM drives that plug into a par-
allel port) are available. Parallel port cables, however, can only be a few meters
in length before you start getting transmission errors. The parallel port uses I/O
port 0x378-0x37A and IRQ 7. If you have two parallel ports, then the second one
uses I/0O port 0x278-0x27A, but does not use an IRQ at all.

USB port The Universal Serial Bus aims to allow any type of hardware to plug into one
plug. The idea is that one day all serial and parallel ports will be scrapped in
favor of a single USB socket from which all external peripherals will daisy chain.
I will not go into USB here.

IDE ribbon The IDE ribbon plugs into your hard disk drive or C: drive on Win-
dows/DOS and also into your CD-ROM drive (sometimes called an IDE CD-
ROM). The IDE cable actually attaches to its own PCI card internal to the moth-
erboard. There are two IDE connectors that use I/O ports 0xF000-0xF007 and
0xF008-0xFOOF, and IRQ 14 and 15, respectively. Most IDE CD-ROMs are also
ATAPI CD-ROMs. ATAPI is a standard (similar to SCSI, below) that enables
many other kinds of devices to plug into an IDE ribbon cable. You get special
floppy drives, tape drives, and other devices that plug into the same ribbon. They
will be all called ATAPI-(this or that).

18

3. PC Hardware 3.2. Master/Slave IDE

SCSIribbon Another ribbon might be present, coming out of a card (called the SCSI
host adaptor or SCSI card) or your motherboard. Home PCs will rarely have
SCSI, such being expensive and used mostly for high-end servers. SCSI cables
are more densely wired than are IDE cables. They also end in a disk drive, tape
drive, CD-ROM, or some other device. SCSI cables are not allowed to just-be-
plugged-in: they must be connected end on end with the last device connected
in a special way called SCSI termination. There are, however, a few SCSI devices
that are automatically terminated. More on this on page 477.

3.2 Master/Slave IDE

Two IDE hard drives can be connected to a single IDE ribbon. The ribbon alone has
nothing to distinguish which connector is which, so the drive itself has jumper pins
on it (see Figure 3.2) that can be set to one of several options. These are one of Master
(MA), Slave (SL), Cable Select (CS), or Master-only /Single-Drive/and-like. The MA op-
tion means that your drive is the “first” drive of two on this IDE ribbon. The SL option
means that your drive is the “second” drive of two on this IDE ribbon. The CS option
means that your machine is to make its own decision (some boxes only work with this
setting), and the Master-only option means that there is no second drive on this ribbon.

IDE ribbon socke! Jumper across this drive’s Master pin

Power socket.

Figure 3.2 Connection end of a typical IDE drive

There might also be a second IDE ribbon, giving you a total of four possible
drives. The first ribbon is known as IDE1 (labeled on your motherboard) or the primary
ribbon, and the second is known as IDE?2 or the secondary ribbon. Your four drives are

19

3.3. CMOS 3. PC Hardware

then called primary master, primary slave, secondary master, and secondary slave. Their
labeling under LINUX{) is discussed in Section 18.4.

3.3 CMOS

The “CMOS” \Stands for Complementary Metal Oxide Semiconductor, which has to do with the technol-
ogy used to store setup information through power-downs\ is a small application built into ROM.
It is also known as the ROM BIOS configuration. You can start it instead of your oper-
ating system (OS) by pressing (= | or | (or something else) just after you switch your
machine on. There will usually be a message Press <key> to enter setup to
explain this. Doing so will take you inside the CMOS program where you can change
your machine’s configuration. CMOS programs are different between motherboard
manufacturers.

Inside the CMOS, you can enable or disable built-in devices (like your mouses
and serial ports); set your machine’s “hardware clock” (so that your machine has the
correct time and date); and select the boot sequence (whether to load the operating sys-
tem off the hard drive or CD-ROM—which you will need for installing LINUX£) from
a bootable CD-ROM). Boot means to start up the computer. ~ The term comes from the lack
of resources with which to begin: the operating system is on disk, but you might need the operating system
to load from the disk—like trying to lift yourself up from your “bootstraps.”~\. You can also Conﬁgure
your hard drive. You should always select Hardrive autodetection “Autodetection
refers to a system that, though having incomplete information, configures itself. In this case the CMOS pro-
gram probes the drive to determine its capacity. Very old CMOS programs required you to enter the drive’s
details manually™. whenever installing a new machine or adding/removing disks. Dif-
ferent CMOSs will have different procedures, so browse through all the menus to see
what your CMOS can do.

The CMOS is important when it comes to configuring certain devices built into
the motherboard. Modern CMOSs allow you to set the I/O ports and IRQ numbers
that you would like particular devices to use. For instance, you can make your CMOS
switch COM1 with COM2 or use a non-standard I/O port for your parallel port. When
it comes to getting such devices to work under LINUX{}, you will often have to power
down your machine to see what the CMOS has to say about that device. More on this
in Chapter 42.

3.4 Serial Devices

Serial ports facilitate low speed communications over a short distance using simple
8 core (or less) cable. The standards are old and communication is not particularly
fault tolerant. There are so many variations on serial communication that it has be-
come somewhat of a black art to get serial devices to work properly. Here I give a

20

3. PC Hardware 3.4. Serial Devices

short explanation of the protocols, electronics, and hardware. The Serial- HOWTO and
Modem-HOWTO documents contain an exhaustive treatment (see Chapter 16).

Some devices that communicate using serial lines are:

e Ordinary domestic dial-up modems.

e Some permanent modem-like Internet connections.
e Mice and other pointing devices.

e Character text terminals.

e Printers.

e Cash registers.

e Magnetic card readers.

e Uninterruptible power supply (UPS) units.

e Embedded microprocessor devices.

A device is connected to your computer by a cable with a 9-pin or 25-pin, male
or female connector at each end. These are known as DB-9 () or DB-25

—
o~
o~
Qw
XS
@«
@
o~
Q=
Qo
os
or
oK
o8

) connectors. Only eight of the pins are ever used, how-

Table 3.1 Pin assignments for DB-9 and DB-25 sockets

DB-9 pin DB-25 pin Direction
number number Acronym Full-Name PC device

3 2 D Transmit Data —

2 3 RD Receive Data —

7 4 RTS Request To Send —

8 5 CTS Clear To Send —

6 6 DSR Data Set Ready —

4 20 DTR Data Terminal Ready —

1 8 CD Data Carrier Detect —

9 22 RI Ring Indicator —

5 7 Signal Ground

The way serial devices communicate is very straightforward: A stream of bytes
is sent between the computer and the peripheral by dividing each byte into eight bits.
The voltage is toggled on a pin called the TD pin or transmit pin according to whether
a bitis 1 or 0. A bit of 1 is indicated by a negative voltage (-15 to -5 volts) and a bit of
0 is indicated by a positive voltage (+5 to +15 volts). The RD pin or receive pin receives

21

3.4. Serial Devices 3. PC Hardware

bytes in a similar way. The computer and the serial device need to agree on a data rate
(also called the serial port speed) so that the toggling and reading of voltage levels is
properly synchronized. The speed is usually quoted in bps (bits per second). Table 3.2
shows a list of possible serial port speeds.

Table 3.2 Serial port speeds in bps

50 200 2,400 57,600 | 576,000 2,000,000
75 300 4,800 || 115,200 | 921,600 2,500,000
110 600 9,600 | 230,400 1,000,000 3,000,000
134 [1,200 || 19,200 | 460,800 1,152,000 3,500,000
150 1,800 | 38,400 | 500,000 1,500,000 4,000,000

A typical mouse communicates between 1,200 and 9,600 bps. Modems communi-
cate at 19,200, 38,400, 57,600, or 115,200 bps. It is rare to find serial ports or peripherals
that support the speeds not blocked in Table 3.2.

To further synchronize the peripheral with the computer, an additional start bit
proceeds each byte and up to two stop bits follow each byte. There may also be a parity
bit which tells whether there is an even or odd number of 1s in the byte (for error
checking). In theory, there may be as many as 12 bits sent for each data byte. These
additional bits are optional and device specific. Ordinary modems communicate with
an 8N1 protocol—8§ data bits, No parity bit, and 1 stop bit. A mouse communicates
with 8 bits and no start, stop, or parity bits. Some devices only use 7 data bits and
hence are limited to send only ASCII data (since ASCII characters range only up to
127).

Some types of devices use two more pins called the request to send (RTS) and clear
to send (CTS) pins. Either the computer or the peripheral pull the respective pin to +12
volts to indicate that it is ready to receive data. A further two pins call the DTR (data
terminal ready) pin and the DSR (data set ready) pin are sometimes used instead—
these work the same way, but just use different pin numbers. In particular, domestic
modems make full use of the RTS/CTS pins. This mechanism is called RTS/CTS flow
control or hardware flow control. Some simpler devices make no use of flow control at
all. Devices that do not use flow control will loose data which is sent without the receiver’s
readiness.

Some other devices also need to communicate whether they are ready to receive
data, but do not have RTS/CTS pins (or DSR/DTR pins) available to them. These emit
special control characters, sent amid the data stream, to indicate that flow should halt
or restart. This is known as software flow control. Devices that optionally support either
type of flow control should always be configured to use hardware flow control. In
particular, a modem used with LINUX{) must have hardware flow control enabled.

22

3. PC Hardware 3.5. Modems

Two other pins are the ring indicator (RI) pin and the carrier detect (CD) pin. These
are only used by modems to indicate an incoming call and the detection of a peer
modem, respectively.

The above pin assignments and protocol (including some hard-core electrical
specifications which I have omitted) are known as RS-232. It is implemented using
a standard chip called a 16550 UART (Universal Asynchronous Receiver-Transmitter)
chip. RS-232 is easily effected by electrical noise, which limits the length and speed at
which you can communicate: A half meter cable can carry 115,200 bps without errors,
but a 15 meter cable is reliable at no more than 19,200 bps. Other protocols (like RS-423
or RS-422) can go much greater distances and there are converter appliances that give
a more advantageous speed/distance tradeoff.

3.5 Modems

Telephone lines, having been designed to carry voice, have peculiar limitations when
it comes to transmitting data. It turns out that the best way to send a binary digit over
a telephone line is to beep it at the listener using two different pitches: a low pitch for
0 and a high pitch for 1. Figure 3.3 shows this operation schematically.

[nlefafafo] [el=]e]d]
f—-—
- m — > 104101108 108 11132102 114 101 100 —
g
1101000 1 1100101 1 1101100 1 1101100 1 1101111 1 0100000 1 1100110 1 1110010 1 1100101 1 11001001 ~~*——

[1101000 1 1100101 I 1101100 1 1101100 1 1101111 10100000 1 1100110 1 1110010 1 1100101 1 11001001 ~~=*—
(——
— 104101 108 108 111 32 102 114 101 100 ——* —‘
[n[efafafe] [e[z]e[a]=

Figure 3.3 Communication between two remote computers by modem

23

3.5. Modems 3. PC Hardware

Converting voltages to pitches and back again is known as modulation-
demodulation and is where the word modem comes from. The word baud means the
number of possible pitch switches per second, which is sometimes used interchange-
ably with bps. There are many newer modulation techniques used to get the most out
of a telephone line, so that 57,600 bps modems are now the standard (as of this writ-
ing). Modems also do other things to the data besides modulating it: They may pack
the data to reduce redundancies (bit compression) and perform error detection and com-
pensation (error correction). Such modem protocols are given names like V.90 (57,600 bps),
V.34 (33,600 bps or 28,800 bps), V.42 (14,400 bps) or V.32 (14,400 bps and lower). When
two modems connect, they need to negotiate a “V” protocol to use. This negotiation is
based on their respective capabilities and the current line quality.

A modem can be in one of two states: command mode or connect mode. A modem is
connected if it can hear a peer modem’s carrier signal over a live telephone call (and is
probably transmitting and receiving data in the way explained), otherwise it is in com-
mand mode. In command mode the modem does not modulate or transmit data but
interprets special text sequences sent to it through the serial line. These text sequences
begin with the letters AT and are called ATtention commands. AT commands are sent
by your computer to configure your modem for the current telephone line conditions,
intended function, and serial port capability—for example, there are commands to:
enable automatic answering on ring; set the flow control method; dial a number; and
hang up. The sequence of commands used to configure the modem is called the modem
initialization string. How to manually issue these commands is discussed in Section
32.6.3, 34.3, and 41.1 and will become relevant when you want to dial your Internet
service provider (ISP).

Because each modem brand supports a slightly different set of modem com-
mands, it is worthwhile familiarizing yourself with your modem manual. Most mod-
ern modems now support the Hayes command set—a generic set of the most useful
modem commands. However, Hayes has a way of enabling hardware flow control
that many popular modems do not adhere to. Whenever in this book I give exam-
ples of modem initialization, I include a footnote referring to this section. It is usu-
ally sufficient to configure your modem to “factory default settings”, but often a sec-
ond command is required to enable hardware flow control. There are no initializa-
tion strings that work on all modems. The web sites http:/www.spy.net/"dustin/modem/
and http://www.teleport.com/ curt/modems.html are useful resources for finding out mo-
dem specifications.

24

Chapter 4

Basic Commands

All of UNIX is case sensitive. A command with even a single
letter’s capitalization altered is considered to be a completely
different command. The same goes for files, directories, config-
uration file formats, and the syntax of all native programming
languages.

4.1 The 1s Command, Hidden Files,
Command-Line Options

In addition to directories and ordinary text files, there are other types of files, although
all files contain the same kind of data (i.e., a list of bytes). The hidden file is a file that
will not ordinarily appear when you type the command 1s to list the contents of a
directory. To see a hidden file you must use the command 1s -a. The -a option
means to list all files as well as hidden files. Another variant is 1s -1, which lists
the contents in long format. The - 1is used in this way to indicate variations on a
command. These are called command-line options or command-line arguments, and most
UNIX commands can take a number of them. They can be strung together in any way
that is convenient “\ Commands under the GNU% free software license are superior in this way: they
have a greater number of options than traditional UNTX commands and are therefore more flexible™\,, for
example, 1s -a -1, 1s -1 -a, or 1s —al —any of these will list all files in long
format.

All GNUZ? commands take the additional arguments ~h and --help. You can
type a command with just this on the command-line and get a usage summary. This is
some brief help that will summarize options that you may have forgotten if you are

25

4.2. Error Messages 4. Basic Commands

already familiar with the command—it will never be an exhaustive description of the
usage. See the later explanation about man pages.

The difference between a hidden file and an ordinary file is merely that the file
name of a hidden file starts with a period. Hiding files in this way is not for security,
but for convenience.

The option 1s -1 is somewhat cryptic for the novice. Its more explanatory ver-
sionis 1s —--format=1long. Similarly, the all option can be given as 1s --all, and
means the same thing as 1s -a.

4.2 Error Messages

Although commands usually do not display a message when they execute “ The com-
puter accepted and processed the command. ™\ successfully, commands do report errors in
a consistent format. The format varies from one command to another but often ap-
pears as follows: command-name: what was attempted : error message. For example, the
command 1s -1 gwerty gives an error 1s: qwerty: No such file or di-
rectory. What actually happened was that the command 1s attempted to read the
file gwerty. Since this file does not exist, an error code 2 arose. This error code cor-
responds to a situation where a file or directory is not being found. The error code
is automatically translated into the sentence No such file or directory. Itis
important to understand the distinction between an explanatory message that a com-
mand gives (such as the messages reported by the passwd command in the previous
chapter) and an error code that was just translated into a sentence. The reason is that
a lot of different kinds of problems can result in an identical error code (there are only
about a hundred different error codes). Experience will teach you that error messages
do not tell you what to do, only what went wrong, and should not be taken as gospel.

The file /usr/include/asm/errno.h contains a complete list of basic error
codes. In addition to these, several other header files “Files ending in . "\ might define
their own error codes. Under UNIX, however, these are 99% of all the errors you are
ever likely to get. Most of them will be meaningless to you at the moment but are
included in Table 4.1 as a reference.

Table 4.1 LINUX error codes

[Number | Cdefine [Message
0 Success
1 EPERM Operation not permitted
2 ENOENT No such file or directory
3 ESRCH No such process
4 EINTR Interrupted system call
5 EIO Input/output error
6 ENXIO Device not configured
7 E2BIG Argument list too long
8 ENOEXEC Exec format error
9 EBADF Bad file descriptor

continues...

26

4. Basic Commands

4.2. Error Messages

Table 4.1 (continued)

[Number | Cdefine Message

10 ECHILD No child processes

11 EAGAIN Resource temporarily unavailable

11 EWOULDBLOCK Resource temporarily unavailable

12 ENOMEM Cannot allocate memory

13 EACCES Permission denied

14 EFAULT Bad address

15 ENOTBLK Block device required

16 EBUSY Device or resource busy

17 EEXIST File exists

18 EXDEV Invalid cross-device link

19 ENODEV No such device

20 ENOTDIR Not a directory

21 EISDIR Is a directory

22 EINVAL Invalid argument

23 ENFILE Too many open files in system

24 EMFILE Too many open files

25 ENOTTY Inappropriate ioctl for device

26 ETXTBSY Text file busy

27 EFBIG File too large

28 ENOSPC No space left on device

29 ESPIPE Illegal seek

30 EROF'S Read-only file system

31 EMLINK Too many links

32 EPIPE Broken pipe

33 EDOM Numerical argument out of domain

34 ERANGE Numerical result out of range

35 EDEADLK Resource deadlock avoided

35 EDEADLOCK Resource deadlock avoided

36 ENAMETOOLONG File name too long

37 ENOLCK No locks available

38 ENOSYS Function not implemented

39 ENOTEMPTY Directory not empty

40 ELOOP Too many levels of symbolic links
EWOULDBLOCK (same as EAGAIN)

42 ENOMSG No message of desired type

43 EIDRM Identifier removed

44 ECHRNG Channel number out of range

45 EL2NSYNC Level 2 not synchronized

46 EL3HLT Level 3 halted

47 EL3RST Level 3 reset

48 ELNRNG Link number out of range

49 EUNATCH Protocol driver not attached

50 ENOCSI No CSI structure available

51 EL2HLT Level 2 halted

52 EBADE Invalid exchange

53 EBADR Invalid request descriptor

54 EXFULL Exchange full

55 ENOANO No anode

56 EBADRQC Invalid request code

57 EBADSLT Invalid slot
EDEADLOCK (same as EDEADLK)

59 EBFONT Bad font file format

60 ENOSTR Device not a stream

61 ENODATA No data available

62 ETIME Timer expired

63 ENOSR Out of streams resources

64 ENONET Machine is not on the network

65 ENOPKG Package not installed

66 EREMOTE Object is remote

67 ENOLINK Link has been severed

68 EADV Advertise error

69 ESRMNT Srmount error

27

continues...

4.2. Error Messages

4. Basic Commands

Table 4.1 (continued)

[Number | Cdefine

[

Message

70 ECOMM

71 EPROTO

72 EMULTIHOP

73 EDOTDOT

74 EBADMSG

75 EOVERFLOW

76 ENOTUNIQ

77 EBADFD

78 EREMCHG

79 ELIBACC

80 ELIBBAD

81 ELIBSCN

82 ELIBMAX

83 ELIBEXEC

84 EILSEQ

85 ERESTART

86 ESTRPIPE

87 EUSERS

88 ENOTSOCK

89 EDESTADDRREQ
90 EMSGSIZE

91 EPROTOTYPE
92 ENOPROTOOPT
93 EPROTONOSUPPORT
94 ESOCKTNOSUPPORT
95 EOPNOTSUPP
96 EPFNOSUPPORT
97 EAFNOSUPPORT
98 EADDRINUSE
99 EADDRNOTAVAIL
100 ENETDOWN

101 ENETUNREACH
102 ENETRESET
103 ECONNABORTED
104 ECONNRESET
105 ENOBUF'S

106 EISCONN

107 ENOTCONN

108 ESHUTDOWN
109 ETOOMANYREF'S
110 ETIMEDOUT
111 ECONNREFUSED
112 EHOSTDOWN
113 EHOSTUNREACH
114 EALREADY

115 EINPROGRESS
116 ESTALE

117 EUCLEAN

118 ENOTNAM

119 ENAVAIL

120 EISNAM

121 EREMOTEIO
122 EDQUOT

123 ENOMEDIUM
124 EMEDIUMTYPE

Communication error on send

Protocol error

Multihop attempted

RFS specific error

Bad message

Value too large for defined data type
Name not unique on network

File descriptor in bad state

Remote address changed

Can not access a needed shared library
Accessing a corrupted shared library
lib section in a.out corrupted
Attempting to link in too many shared libraries
Cannot exec a shared library directly
Invalid or incomplete multibyte or wide character
Interrupted system call should be restarted
Streams pipe error

Too many users

Socket operation on non-socket
Destination address required

Message too long

Protocol wrong type for socket

Protocol not available

Protocol not supported

Socket type not supported

Operation not supported

Protocol family not supported

Address family not supported by protocol
Address already in use

Cannot assign requested address
Network is down

Network is unreachable

Network dropped connection on reset
Software caused connection abort
Connection reset by peer

No buffer space available

Transport endpoint is already connected
Transport endpoint is not connected
Cannot send after transport endpoint shutdown
Too many references: cannot splice
Connection timed out

Connection refused

Host is down

No route to host

Operation already in progress
Operation now in progress

Stale NFS file handle

Structure needs cleaning

Not a XENIX named type file

No XENIX semaphores available

Is a named type file

Remote I/O error

Disk quota exceeded

No medium found

Wrong medium type

28

4. Basic Commands 4.3. Wildcards, Names, Extensions, and glob Expressions

4.3 Wildcards, Names, Extensions, and glob Expressions

1s can produce a lot of output if there are a large number of files in a directory. Now
say that we are only interested in files that ended with the letters tter. To list only
these files, youcan use 1s *tter. The * matches any number of any other characters.
So, for example, the files Tina.letter, Mary_Jones.letter and the file splat—
ter, would all be listed if they were present, whereas a file Harlette would not be
listed. While the * matches any length of characters, the ? matches only one character.
For example, the command 1s ?ar* would list the files Mary_Jones.letter and
Harlette.

4.3.1 File naming

When naming files, it is a good idea to choose names that group files of the
same type together. You do this by adding an exfension to the file name that de-
scribes the type of file it is. We have already demonstrated this by calling a file
Mary_Jones. letter instead of just Mary_Jones. If you keep this convention, you
will be able to easily list all the files that are letters by entering 1s *.letter. The
file name Mary_Jones.letter is then said to be composed of two parts: the name,
Mary_Jones, and the extension, letter.

Some common UNIX extensions you may see are:

.a Archive. 1ib* . a is a static library.

.alias X Window System font alias catalog.

.avi Video format.

.au Audio format (original Sun Microsystems generic sound file).
.awk awk program source file.

.bib bibtex KIEX bibliography source file.

.bmp Microsoft Bitmap file image format.

.bz2 File compressed with the bzip2 compression program.
.ce, .cxx, .C, .cpp C++ program source code.

.cf, .cfg Configuration file or script.

.cgi Executable script that produces web page output.

.conf, ,config Configuration file.

29

4.3. Wildcards, Names, Extensions, and glob Expressions 4. Basic Commands

.csh csh shell script.

.c C program source code.

.db Database file.

.dir X Window System font/other database directory.
.deb Debian(© package for the Debian distribution.

.diff Output of the diff program indicating the difference between files or source
trees.

.dvi Device-independent file. Formatted output of . tex KEIgX file.
.el Lisp program source.

.g3 G3 fax format image file.

.gif, .giff GIF image file.

.gz File compressed with the gzip compression program.

.htm, .html, .shtm, .html Hypertext Markup Language. A web page of some sort.
.h C/C++ program header file.

.i SWIG source, or C preprocessor output.

.in configure input file.

.info Info pages read with the info command.

.jpg, . jpeg JPEG image file.

.15 Laser]et file. Suitable input to a HP Laser]et printer.

.log Log file of a system service. This file grows with status messages of some system
program.

.1sm LINUX{) Software Map entry.

.lyx LyX word processor document.

.man Man page.

.mf Meta-Font font program source file.

.pbm PBM image file format.

.pcf PCF image file—intermediate representation for fonts. X Window System font.

.pex PCXimage file.

30

4. Basic Commands 4.3. Wildcards, Names, Extensions, and glob Expressions

.pfb X Window System font file.

.pdf Formatted document similar to PostScript or dvi.
.php PHP program source code (used for web page design).
.pl Perl program source code.

.ps PostScript file, for printing or viewing.

.py Python program source code.

.rpm RedHat Package Manager rpm file.

.sgml Standard Generalized Markup Language. Used to create documents to be con-
verted to many different formats.

.sh sh shell script.

.so Shared object file. 1ib*.so is a Dynamically Linked Library. ~Executable program
code shared by more than one program to save disk space and memory™\

.spd Speedo X Window System font file.

.tar tarred directory tree.

.tel Tcl/Tk source code (programming language).

.texi, .texinfo Texinfo source. Info pages are compiled from these.

.tex TgX or KIEX document. I&TEX is for document processing and typesetting.
.tga TARGA image file.

.tgz Directory tree that has been archived with tar, and then compressed with gzip.
Also a package for the Slackware distribution.

.tiff TIFF image file.

.tfm KIEX font metric file.

.ttf Truetype font.

.txt Plain English text file.

.voc Audio format (Soundblaster’s own format).

.wav Audio format (sound files common to Microsoft Windows).
.xpm XPM image file.

.y vacc source file.

31

4.3. Wildcards, Names, Extensions, and glob Expressions 4. Basic Commands

.2 File compressed with the compress compression program.

.zip File compressed with the pkzip (or PKZIP.EXE for DOS) compression pro-
gram.

.1,.2... Man page.

In addition, files that have no extension and a capitalized descriptive name are
usually plain English text and meant for your reading. They come bundled with pack-
ages and are for documentation purposes. You will see them hanging around all over
the place.

Some full file names you may see are:

AUTHORS List of people who contributed to or wrote a package.
ChangeLog List of developer changes made to a package.
COPYING Copyright (usually GPL) for a package.

INSTALL Installation instructions.

README Help information to be read first, pertaining to the directory the README is
in.

TODO List of future desired work to be done to package.

BUGS List of errata.

NEWS Info about new features and changes for the layman about this package.
THANKS List of contributors to a package.

VERSION Version information of the package.

4.3.2 Glob expressions

There is a way to restrict file listings to within the ranges of certain characters. If you
only want to list the files that begin with A through M, you canrun 1s [A-M]*. Here
the brackets have a special meaning—they match a single character like a 2, but only
those given by the range. You can use this feature in a variety of ways, for example,
[a—dJW-Y] * matches all files beginning with a, b, ¢, d, J, W, X or ¥; and * [a-d]id
matches all files ending with aid, bid, cid ordid; and *. {cpp, ¢, cxx} matches all
files ending in .cpp, .c or .cxx. This way of specifying a file name is called a glob
expression. Glob expressions are used in many different contexts, as you will see later.

32

4. Basic Commands 4.4. Usage Summaries and the Copy Command

4.4 Usage Summaries and the Copy Command

The command cp stands for copy. It duplicates one or more files. The format is

cp <file> <newfile>
cp <file> [<file> ...] <dir>

or

cp file newfile
cp file [file ...] dir

The above lines are called a usage summary. The < and > signs mean that you don’t
actually type out these characters but replace <file> with a file name of your own.
These are also sometimes written in italics like, cp file newfile. In rare cases they are
written in capitals like, co FILE NEWFILE. <file> and <dir> are called parameters.
Sometimes they are obviously numeric, like a command that takes <ioport>. \Any-
one emailing me to ask why typing in literal, <, i, o, p, o, r, t and > characters did not work will get a rude
reply™\. These are common conventions used to specify the usage of a command. The
[and] brackets are also not actually typed but mean that the contents between them
are optional. The ellipses ... mean that <file> can be given repeatedly, and these
also are never actually typed. From now on you will be expected to substitute your
own parameters by interpreting the usage summary. You can see that the second of
the above lines is actually just saying that one or more file names can be listed with a
directory name last.

From the above usage summary it is obvious that there are two ways to use the
cp command. If the last name is not a directory, then cp copies that file and renames it
to the file name given. If the last name is a directory, then cp copies all the files listed
into that directory.

The usage summary of the 1s command is as follows:

1s [-1l, —--format=long] [-a, --all] <file> <file> ...
ls —-al

where the comma indicates that either option is valid. Similarly, with the passwd
command:

[passwd [<username>]]

You should practice using the cp command now by moving some of your files from
place to place.

33

4.5. Directory Manipulation 4. Basic Commands

4.5 Directory Manipulation

The cd command is used to take you to different directories. Create a directory
new with mkdir new. You could create a directory one by doing cd new and then
mkdir one, but there is a more direct way of doing this with mkdir new/one. You
can then change directly to the one directory with cd new/one. And similarly you
can get back to where you were with cd .. /... In this way, the / is used to represent
directories within directories. The directory one is called a subdirectory of new.

The command pwd stands for present working directory (also called the cur-
rent directory) and tells what directory you are currently in. Entering pwd gives
some output like /home/<username>. Experiment by changing to the root di-
rectory (with cd /) and then back into the directory /home/<username> (with
cd /home/<username>). The directory /home/<username> is called your home di-
rectory, and is where all your personal files are kept. It can be used at any time with the
abbreviation . In other words, entering cd /home/<username> is the same as en-
tering cd ~. The process whereby a ~ is substituted for your home directory is called
tilde expansion.

To remove (i.e., erase or delete) a file, use the command rm <filename>. To
remove a directory, use the command rmdir <dir>. Practice using these two com-
mands. Note that you cannot remove a directory unless it is empty. To remove a
directory as well as any contents it might contain, use the command rm -R <dir>.
The -R option specifies to dive into any subdirectories of <dir> and delete their con-
tents. The process whereby a command dives into subdirectories of subdirectories of

. is called recursion. -R stands for recursively. This is a very dangerous command.
Although you may be used to “undeleting” files on other systems, on UNIX a deleted
file is, at best, extremely difficult to recover.

The cp command also takes the —-R option, allowing it to copy whole direc-
tories. The mv command is used to move files and directories. It really just re-
names a file to a different directory. Note that with cp you should use the option
-p and —-d with -R to preserve all attributes of a file and properly reproduce symlinks
(discussed later). Hence, always use cp —dpR <dir> <newdir> instead of cp -
R <dir> <newdir>.

4.6 Relative vs. Absolute Pathnames

Commands can be given file name arguments in two ways. If you are in the same di-
rectory as the file (i.e., the file is in the current directory), then you can just enter the
file name on its own (e.g., cp my_file new_file). Otherwise, you can enter the full
path name, like cp /home/jack/my_file /home/jack/new_file. Very often ad-
ministrators use the notation . /my_file to be clear about the distinction, for instance,

34

4. Basic Commands 4.7. System Manual Pages

cp ./my-file ./new_file. Theleading ./ makes it clear thatboth files are relative
to the current directory. File names not starting with a / are called relative path names,
and otherwise, absolute path names.

4.7 System Manual Pages

(See Chapter 16 for a complete overview of all documentation on the system, and also
how to print manual pages in a properly typeset format.)

The command man [<section>|-a] <command> displays help on a particu-
lar topic and stands for manual. Every command on the entire system is documented in
so-named man pages. In the past few years a new format of documentation, called info,
has evolved. This is considered the modern way to document commands, but most
system documentation is still available only through man. Very few packages are not
documented in man however.

Man pages are the authoritative reference on how a command works because
they are usually written by the very programmer who created the command. Under
UNIX, any printed documentation should be considered as being second-hand infor-
mation. Man pages, however, will often not contain the underlying concepts needed
for understanding the context in which a command is used. Hence, it is not possible
for a person to learn about UNIX purely from man pages. However, once you have the
necessary background for a command, then its man page becomes an indispensable
source of information and you can discard other introductory material.

Now, man pages are divided into sections, numbered 1 through 9. Section 1 con-
tains all man pages for system commands like the ones you have been using. Sections
2-7 contain information for programmers and the like, which you will probably not
have to refer to just yet. Section 8 contains pages specifically for system administra-
tion commands. There are some additional sections labeled with letters; other than
these, there are no manual pages besides the sections 1 through 9. The sections are

../manl | User programs
.../man2 | System calls

../man3 | Library calls

../man4 | Special files

../man5 | File formats

../man6 | Games

../man7 | Miscellaneous

../man8 | System administration

../man9 | Kernel documentation

You should now use the man command to look up the manual pages for all
the commands that you have learned. Type man cp, man mv, man rm, man mkdir,
man rmdir, man passwd, man cd, man pwd, and of course man man. Much of the

35

4.8. System info Pages 4. Basic Commands

information might be incomprehensible to you at this stage. Skim through the pages to
get an idea of how they are structured and what headings they usually contain. Man
pages are referenced with notation like cp(1), for the cp command in Section 1, which
can be read withman 1 cp. This notation will be used from here on.

4.8 System info Pages

info pages contain some excellent reference and tutorial information in hypertext
linked format. Type info on its own to go to the top-level menu of the entire info
hierarchy. You can also type info <command> for help on many basic commands.
Some packages will, however, not have info pages, and other UNIX systems do not
support info at all.

info is an interactive program with keys to navigate and search documentation. In-
side info, typing will invoke the help screen from where you can learn more com-
mands.

4.9 Some Basic Commands

You should practice using each of these commands.

bc A calculator program that handles arbitrary precision (very large) numbers. It is
useful for doing any kind of calculation on the command-line. Its use is left as an
exercise.

cal [[0-12] 1-9999] Printsouta nicely formatted calender of the current month,
a specified month, or a specified whole year. Try cal 1 for fun, and
cal 9 1752, when the pope had a few days scrapped to compensate for round-
off error.

cat <filename> [<filename> ..,.] Writes the contents of all the files listed to
the screen. cat can join a lot of files together with cat <filename> <file-
name> ... > <newfile>. Thefile <newfile> will be an end-on-end concate-
nation of all the files specified.

clear Erases all the text in the current terminal.

date Prints out the current date and time. (The command t ime, though, does some-
thing entirely different.)

df Stands for disk free and tells you how much free space is left on your system. The
available space usually has the units of kilobytes (1024 bytes) (although on some
other UNIX systems this will be 512 bytes or 2048 bytes). The right-most column

36

4. Basic Commands 4.9. Some Basic Commands

tells the directory (in combination with any directories below that) under which
that much space is available.

dircmp Directory compare. This command compares directories to see if changes
have been made between them. You will often want to see where two trees differ
(e.g., check for missing files), possibly on different computers. Runman dircmp
(thatis, dircmp(1)). (This is a System 5 command and is not present on LINUX@.
You can, however, compare directories with the Midnight Commander, mc).

du <directory> Stands for disk usage and prints out the amount of space occupied
by a directory. It recurses into any subdirectories and can print only a summary
with du -s <directory>. Also try du —-max-depth=1 /var and du -
x / onasystem with /usr and /home on separate partitions. “See page 143~

dmesg Prints a complete log of all messages printed to the screen during the bootup
process. This is useful if you blinked when your machine was initializing. These
messages might not yet be meaningful, however.

echo Prints a message to the terminal. Try echo ’‘hello there’, echo
$[10*3+2], echo ‘$[10*3+2]’. The command echo -e allows interpreta-
tion of certain backslash sequences, for example echo -e "\a", which prints
a bell, or in other words, beeps the terminal. echo -n does the same without
printing the trailing newline. In other words, it does not cause a wrap to the next
line after the text is printed. echo -e -n "\b", prints a back-space character
only, which will erase the last character printed.

exit Logs you out.

expr <expression> Calculates the numerical expression expression. Most
arithmetic operations that you are accustomed to will work. Try expr
5 + 10 "*’ 2. Observe how mathematical precedence is obeyed (i.e., the *
is worked out before the +).

file <filename> Prints out the type of data contained in a file.
file portrait.jpg will tell you that portrait.jpg is a JPEG im-
age data, JFIF standard. The command file detects an enormous
amount of file types, across every platform. £ile works by checking whether the
first few bytes of a file match certain tell-tale byte sequences. The byte sequences
are called magic numbers. Their complete list is stored in /usr/share/magic.
(The word “magic” under UNIX normally refers to byte sequences or numbers that have a specific
meaning or implication. So-called magic numbers are invented for source code, file formats, and file
systems™\

free Prints out available free memory. You will notice two listings: swap space and
physical memory. These are contiguous as far as the user is concerned. The
swap space is a continuation of your installed memory that exists on disk. It is
obviously slow to access but provides the illusion of much more available RAM

37

4.9. Some Basic Commands 4. Basic Commands

and avoids the possibility of ever running out of memory (which can be quite
fatal).

head [-n <lines>] <filename> Prints the first <lines> lines of a file or 10
lines if the —n option is not given. (See also tail below).

hostname [<new-name>] With no options, hostname prints the name of your ma-
chine, otherwise it sets the name to <new—name>.

kbdrate -r <chars-per-second> —-d <repeat-delay> Changes the repeat
rate of your keys. Most users will like this rate set to kbdrate -r 32 -d 250
which unfortunately is the fastest the PC can go.

more Displays a long file by stopping at the end of each page. Run the following:
ls -1 /bin > bin-1s, and then try more bin-1s. The first command cre-
ates a file with the contents of the output of 1s. This will be a long file because
the directory /bin has a great many entries. The second command views the file.

Use the space bar to page through the file. When you get bored, just press .
Youcanalsotry 1s -1 /bin | more which will do the same thing in one go.

less The GNU%R version of more, but with extra features. On your system, the two
commands may be the same. With less, you can use the arrow keys to page
up and down through the file. You can do searches by pressing , and then

typing in a word to search for and then pressing F Found words will be
highlighted, and the text will be scrolled to the first found word. The important
commands are:

- Go to the end of a file.
-ssss Search backward through a file for the text ssss.

ssss Search forward through a file for the text ssss. “Actually ssss is a regular
expression. See Chapter 5 for more info.™\

- Scroll forward and keep trying to read more of the file in case some

other program is appending to it—useful for log files.
nnn Go to line nnn of the file.

Quit. Used by many UNIX text-based applications (sometimes —-).

(You can make less stop beeping in the irritating way that it does by editing the
file /etc/profile and adding the lines

LESS=-Q
export LESS

and then logging out and logging in again. But this is an aside that will make
more sense later.)

38

4. Basic Commands 4.9. Some Basic Commands

lynx <url> Opens a URL “URL stands for Uniform Resource Locator—a web address™\ at the
console. Try 1lynx http://lwn.net/.

links <url> Another text-based web browser.

nohup <command> & Runs a command in the background, appending any output
the command may produce to the file nohup. out in your home directory. no-
hup has the useful feature that the command will continue to run even after you
have logged out. Uses for nohup will become obvious later.

sleep <seconds> Pauses for <seconds> seconds. See also usleep.

sort <filename> Prints a file with lines sorted in alphabetical order. Create a file
called telephone with each line containing a short telephone book entry. Then
type sort telephone, or sort telephone | less and see what happens.
sort takes many interesting options to sort in reverse (sort -r), to eliminate
duplicate entries (sort -u), toignore leading whitespace (sort -b), and so on.
See the sort(1) for details.

strings [-n <len>] <filename> Writes outa binary file, but strips any unread-
able characters. Readable groups of characters are placed on separate lines. If you
have a binary file that you think may contain something interesting but looks
completely garbled when viewed normally, use strings to sift out the inter-
esting stuff: try less /bin/cp and then try strings /bin/cp. By default
strings does not print sequences smaller than 4. The —n option can alter this
limit.

split ... Splits a file into many separate files. This might have been used when
a file was too big to be copied onto a floppy disk and needed to be split into,
say, 360-KB pieces. Its sister, csplit, can split files along specified lines of text
within the file. The commands are seldom used on their own but are very useful
within programs that manipulate text.

tac <filename> [<filename> ,..] Writes the contents of all the files listed to
the screen, reversing the order of the lines—that is, printing the last line of the
file first. tac is cat backwards and behaves similarly.

tail [-f] [-n <lines>] <filename> Prints the last <lines> lines of a file or
10 lines if the —n option is not given. The —f option means to watch the file for
lines being appended to the end of it. (See also head above.)

uname Prints the name of the UNIX operating system you are currently using. In this
case, LINUX[&.

uniq <filename> Prints a file with duplicate lines deleted. The file must first be
sorted.

39

4.10. The mc File Manager 4. Basic Commands

usleep <microseconds> Pauses for <microseconds> microseconds
(1/1,000,000 of a second).

we [-c] [-w] [-1] <filename> Counts the number of bytes (with -c for
character), or words (with —w), or lines (with -1) in a file.

whatis <command> Gives the first line of the man page corresponding to <com-
mand>, unless no such page exists, in which case it prints nothing appropri-
ate.

whoami Prints your login name.

410 The mc File Manager

Those who come from the DOS world may remember the famous Norton Commander
file manager. The GNU% project has a Free clone called the Midnight Commander, mc.
It is essential to at least try out this package—it allows you to move around files and
directories extremely rapidly, giving a wide-angle picture of the file system. This will
drastically reduce the number of tedious commands you will have to type by hand.

4,11 Multimedia Commands for Fun

You should practice using each of these commands if you have your sound card con-
ﬁgured. I don’t want to give the impression that LINUX{} does not have graphical applications to do
all the functions in this section, but you should be aware that for every graphical application, there is a text-
mode one that works better and consumes fewer resources™\. You may also find that some of these
packages are not installed, in which case you can come back to this later.

play [-v <volume>] <filename> Plays linear audio formats out through your
sound card. These formats are .8svx, .aiff, .au, .cdr, .cvs, .dat, .gsm,
.hcom, .maud, .sf, .smp, .txw, .vms, .voc, .wav, .wve, .raw, .ub, .sb,
.uw, .sw, or .ul files. In other words, it plays almost every type of “basic”
sound file there is: most often this will be a simple Windows . wav file. Specify
<volume> in percent.

rec <filename> Records from your microphone into a file. (play and rec are from
the same package.)

mpgl23 <filename> Plays audio from MPEG files level 1, 2, or 3. Useful options are
-b 1024 (for increasing the buffer size to prevent jumping) and --2t o1 (down-
samples by a factor of 2 for reducing CPU load). MPEG files contain sound
and/or video, stored very compactly using digital signal processing techniques
that the commercial software industry seems to think are very sophisticated.

40

4. Basic Commands 4.12. Terminating Commands

cdplay Plays a regular music CDUEE. cdp is the interactive version.

IGITAL AUDID

aumix Sets your sound card’s volume, gain, recording volume, etc. You can use it
interactively or just enter aumix -v <volume> to immediately set the volume
in percent. Note that this is a dedicated mixer program and is considered to be an
application separate from any that play music. Preferably do not set the volume
from within a sound-playing application, even if it claims this feature—you have
much better control with aumix.

mikmod —--interpolate -hq —-renice Y <filename> Plays Mod files. Mod
files are a special type of audio format that stores only the duration and pitch of
the notes that constitute a song, along with samples of each musical instrument
needed to play the song. This makes for high-quality audio with phenomenally
small file size. mikmod supports 669, AMF, DSM, FAR, GDM, IMF, IT, MED,
MOD, MTM, S3M, STM, STX, ULT, UNI, and XM audio formats—that is, proba-
bly every type in existence. Actually, a lot of excellent listening music is available
on the Internet in Mod file format. The most common formats are .it, .mod,
.s3m, and . xm. \Original .mod files are the product of Commodore-Amiga computers and
had only four tracks. Today’s 16 (and more) track Mod files are comparable to any recorded musicX\

4.12 Terminating Commands

You usually use - to stop an application or command that runs cont'inuously.
You must type this at the same prompt where you entered the command. If this doesn’t

work, the section on processes (Section 9.5) will explain about signalling a running ap-
plication to quit.

4.13 Compressed Files

Files typically contain a lot of data that one can imagine might be represented with a
smaller number of bytes. Take for example the letter you typed out. The word “the”
was probably repeated many times. You were probably also using lowercase letters
most of the time. The file was by far not a completely random set of bytes, and it
repeatedly used spaces as well as using some letters more than others. “English text
in fact contains, on average, only about 1.3 useful bits (there are eight bits in a byte) of data per byte™
Because of this the file can be compressed to take up less space. Compression involves
representing the same data by using a smaller number of bytes, in such a way that the
original data can be reconstructed exactly. Such usually involves finding patterns in
the data. The command to compress a file is gzip <filename>, which stands for
GNU zip. Run gzip on a file in your home directory and then run 1s to see what
happened. Now, use more to view the compressed file. To uncompress the file use

41

4.14. Searching for Files 4. Basic Commands

gzip -d <filename>. Now, use more to view the file again. Many files on the
system are stored in compressed format. For example, man pages are often stored
compressed and are uncompressed automatically when you read them.

You previously used the command cat to view a file. You can use the com-
mand zcat to do the same thing with a compressed file. Gzip a file and then type
zcat <filename>. You will see that the contents of the file are written to the screen.
Generally, when commands and files have a z in them they have something to do with
compression—the letter z stands for zip. You can use zcat <filename> | lessto
view a compressed file proper. You can also use the command zless <filename>,
which does the same as zcat <filename> | less. (Note that your less may ac-
tually have the functionality of zless combined.)

A new addition to the arsenal is bzip2. This is a compression program very
much like gzip, except that it is slower and compresses 20%-30% better. It is useful
for compressing files that will be downloaded from the Internet (to reduce the transfer
volume). Files that are compressed with bzip2 have an extension .bz2. Note that
the improvement in compression depends very much on the type of data being com-
pressed. Sometimes there will be negligible size reduction at the expense of a huge
speed penalty, while occasionally it is well worth it. Files that are frequently com-
pressed and uncompressed should never use bzip2.

4.14 Searching for Files

You can use the command find to search for files. Change to the root directory, and
enter £ind. It will spew out all the files it can see by recursively descending ~ Goes into
each subdirectory and all its subdirectories, and repeats the command find. X\ into all subdirectories.
In other words, £ind, when executed from the root directory, prints all the files on the

system. find will work for a long time if you enter it as you have—press -— to
stop it.

Now change back to your home directory and type find again. You will see all
your personal files. You can specify a number of options to £ind to look for specific
files.

find -type d Shows only directories and not the files they contain.

find -type £ Shows only files and not the directories that contain them, even
though it will still descend into all directories.

find -name <filename> Finds only files that have the name <filename>. For
instance, find —-name ’*.c’ will find all files that end in a .c extension
(find -name *.c without the quote characters will not work. You will see
why later). find -name Mary_Jones.letter will find the file with the name
Mary_Jones,letter.

42

4. Basic Commands 4.15. Searching Within Files

find -size [[+|-]]<size> Finds only files that have a size larger (for +) or
smaller (for -) than <size> kilobytes, or the same as <size> kilobytes if the
sign is not specified.

find <directory> [<directory> ...] Starts f£ind in each of the specified di-
rectories.

There are many more options for doing just about any type of search for a file. See
find(1) for more details (that is, run man 1 find). Look also at the —exec option
which causes £ind to execute a command for each file it finds, for example:

[find /usr —-type f —-exec 1ls ’"-al’ ’"{}" ’;’]

find has the deficiency of actively reading directories to find files. This process
is slow, especially when you start from the root directory. An alternative command is
locate <filename>. This searches through a previously created database of all the
files on the system and hence finds files instantaneously. Its counterpart updatedb
updates the database of files used by locate. On some systems, updatedb runs
automatically every day at 04h00.

Try these (updatedb will take several minutes):

updatedb
locate rpm
locate deb
locate passwd
locate HOWTO
locate README

4.15 Searching Within Files

Very often you will want to search through a number of files to find a particular word
or phrase, for example, when a number of files contain lists of telephone numbers with
people’s names and addresses. The command grep does a line-by-line search through
a file and prints only those lines that contain a word that you have specified. grep has
the command summary:

[grep [options] <pattern> <filename> [<filename> ...]]

N«The words word, string, or pattern are used synonymously in this context, basically meaning a short length
of letters and-or numbers that you are trying to find matches for. A pattern can also be a string with kinds of
wildcards in it that match different characters, as we shall see later™\

43

4.16. Copying to MS-DOS and Windows Formatted Floppy Disks 4. Basic Commands

Run grep for the word “the” to display all lines containing it: grep
"the’ Mary-Jones.letter. Now try grep ’'the’ *, letter.

grep —-n <pattern> <filename> shows the line number in the file where the
word was found.

grep —-<num> <pattern> <filename> prints out <num> of the lines that came
before and after each of the lines in which the word was found.

grep —A <num> <pattern> <filename> prints out <num> of the lines that came
After each of the lines in which the word was found.

grep -B <num> <pattern> <filename> prints out <num> of the lines that came
Before each of the lines in which the word was found.

grep -v <pattern> <filename> prints out only those lines that do not contain
the word you are searching for. N You may think that the —v option is no longer doing the
same kind of thing that grep is advertised to do: i.e., searching for strings. In fact, UNIX commands
often suffer from this—they have such versatility that their functionality often overlaps with that of
other commands. One actually never stops learning new and nifty ways of doing things hidden in
the dark corners of man pages™\

grep —-i <pattern> <filename> does the same as an ordinary grep but is case
insensitive.

416 Copying to MS-DOS and Windows Formatted
Floppy Disks

A package, called the mtools package, enables reading and writing to MS-
DOS/Windows floppy disks. These are not standard UNIX commands but are pack-
aged with most LINUX{} distributions. The commands support Windows “long file
name” floppy disks. Put an MS-DOS disk in your A: drive. Try

mdir A:

touch myfile
mcopy myfile A:
mdir A:

Note that there is 110 such thing as an A: disk under LINUX{}. Only the mt 0o1s pack-
age understands A: in order to retain familiarity for MS-DOS users. The complete list
of commands is

floppyd mcopy mformat mmount mshowfat
mattrib mdel minfo mmove mtoolstest

44

4. Basic Commands 4.17. Archives and Backups

mbadblocks mdeltree mkmanifest mpartition mtype
mcat mdir mlabel mrd mzip
mcd mdu mmd mren XCcopy

Entering info mtools will give detailed help. In general, any MS-DOS command,
put into lower case with an m prefixed to it, gives the corresponding LINUX{) com-
mand.

4.17 Archives and Backups

Never begin any work before you have a fail-safe method of
backing it up.

One of the primary activities of a system administrator is to make backups. It is
essential never to underestimate the volatility | Ability to evaporate or become chaotic. \ of
information in a computer. Backups of data are therefore continually made. A backup
is a duplicate of your files that can be used as a replacement should any or all of the
computer be destroyed. The idea is that all of the data in a directory “ As usual, meaning
a directory and all its subdirectories and all the files in those subdirectories, etc. X\ are stored in a sep-
arate place—often compressed—and can be retrieved in case of an emergency. When
we want to store a number of files in this way, it is useful to be able to pack many files
into one file so that we can perform operations on that single file only. When many
files are packed together into one, this packed file is called an archive. Usually archives
have the extension . tar, which stands for tape archive.

To create an archive of a directory, use the tar command:

[tar —-c¢ —f <filename> <directory>]

Create a directory with a few files in it, and run the tar command to back it up.
A file of <filename> will be created. Take careful note of any error messages that tar
reports. List the file and check that its size is appropriate for the size of the directory
you are archiving. You can also use the verify option (see the man page) of the tar
command to check the integrity of <filename>. Now remove the directory, and then
restore it with the extract option of the tar command:

[tar -x —-f <filename>]

You should see your directory recreated with all its files intact. A nice option to give
to tar is —v. This option lists all the files that are being added to or extracted from the
archive as they are processed, and is useful for monitoring the progress of archiving.

45

4.18. The PATH Where Commands Are Searched For 4. Basic Commands

It is obvious that you can call your archive anything you like, however; the common
practice is to call it <directory>.tar, which makes it clear to all exactly what it is.
Another important option is —p which preserves detailed attribute information of files.

Once you have your .tar file, you would probably want to compress it with
gzip. This will create a file <directory>.tar.gz, which is sometimes called <di-
rectory>.tgz for brevity.

A second kind of archiving utility is cpio. cpio is actually more powerful than
tar, but is considered to be more cryptic to use. The principles of cpio are quite similar
and its use is left as an exercise.

418 The PATH Where Commands Are Searched For

When you type a command at the shell prompt, it has to be read off disk out of one
or other directory. On UNIX, all such executable commands are located in one of about
four directories. A file is located in the directory tree according to its type, rather than
according to what software package it belongs to. For example, a word processor may
have its actual executable stored in a directory with all other executables, while its font
files are stored in a directory with other fonts from all other packages.

The shell has a procedure for searching for executables when you type them in.
If you type in a command with slashes, like /bin/cp, then the shell tries to run the
named program, cp, out of the /bin directory. If you just type cp on its own, then it
tries to find the cp command in each of the subdirectories of your PATH. To see what
your PATH is, just type

[echo SPATH]

You will see a colon separated list of four or more directories. Note that the
current directory . is not listed. It is important that the current directory not be
listed for reasons of security. Hence, to execute a command in the current directory,
we hence always . /<command>.

To append, for example, a new directory /opt /gnome/bin to your PATH, do

PATH="$PATH: /opt/gnome/bin"
export PATH

LINUX4) supports the convenience of doing this in one line:

[export PATH="S$PATH:/opt/gnome/bin"]

46

4. Basic Commands 4.19. The —- Option

There is a further command, which, to check whether a command is locatable
from the PATH. Sometimes there are two commands of the same name in different di-
rectories of the PATH. \This is more often true of Solaris systems than LINUX{. Typing which
<command> locates the one that your shell would execute. Try:

which 1s

which cp mv rm
which which
which cranzgots

which is also useful in shell scripts to tell if there is a command at all, and hence
check whether a particular package is installed, for example, which netscape.

419 The —— Option

If a file name happens to begin with a — then it would be impossible to use that file
name as an argument to a command. To overcome this circumstance, most commands
take an option —-. This option specifies that no more options follow on the command-
line—everything else must be treated as a literal file name. For instance

touch -- -stupid_file_name
rm —-— —-stupid_file_name

47

4.19. The —- Option 4. Basic Commands

48

Chapter 5

Regular Expressions

A regular expression is a sequence of characters that forms a template used to search
for strings ~Words, phrases, or just about any sequence of characters. "\ within text. In other
words, itis a search pattern. To get an idea of when you would need to do this, consider
the example of having a list of names and telephone numbers. If you want to find a
telephone number that contains a 3 in the second place and ends with an 8, regular
expressions provide a way of doing that kind of search. Or consider the case where
you would like to send an email to fifty people, replacing the word after the “Dear”
with their own name to make the letter more personal. Regular expressions allow for
this type of searching and replacing.

5.1 Overview

Many utilities use the regular expression to give them greater power when manipulat-
ing text. The grep command is an example. Previously you used the grep command
to locate only simple letter sequences in text. Now we will use it to search for regular
expressions.

In the previous chapter you learned that the ? character can be used to signify
that any character can take its place. This is said to be a wildcard and works with
file names. With regular expressions, the wildcard to use is the . character. So, you
can use the command grep .3....8 <filename> to find the seven-character tele-
phone number that you are looking for in the above example.

Regular expressions are used for line-by-line searches. For instance, if the seven
characters were spread over two lines (i.e., they had a line break in the middle), then
grep wouldn’t find them. In general, a program that uses regular expressions will
consider searches one line at a time.

49

5.1. Overview 5. Regular Expressions

Here are some regular expression examples that will teach you the regular ex-
pression basics. We use the grep command to show the use of regular expressions
(remember that the —w option matches whole words only). Here the expression itself
is enclosed in * quotes for reasons that are explained later.

grep -w ’'t[a-i]e’ Matches the words tee, the, and tie. The brackets have a
special significance. They mean to match one character that can be anything
from a to i.

grep -w 't[i-z]e’ Matches the words tie and toe.

grep —-w 'cr[a-m]*t’ Matches the words craft, credit, and cricket. The *
means to match any number of the previous character, which in this case is any
character from a through m.

grep -w 'kr.*n’ Matches the words kremlin and krypton, because the
matches any character and the * means to match the dot any number of times.

egrep -w ' (th|sh).*rt’ Matches the words shirt, short, and thwart. The
| means to match either the th or the sh. egrep is just like grep but supports
extended regular expressions that allow for the | feature. N The | character often denotes
a logical OR, meaning that either the thing on the left or the right of the | is applicable. This is true of
many programming languages. "\ Note how the square brackets mean one-of-several-
characters and the round brackets with |’s mean one-of-several-words.

grep -w ’'thr[aeiou] *t’ Matches the words threat and throat. As you can
see, a list of possible characters can be placed inside the square brackets.

grep -w 'thr["a-£f]*t’ Matches the words throughput and thrust. The " af-
ter the first bracket means to match any character except the characters listed. For
example, the word thrift is not matched because it contains an £.

The above regular expressions all match whole words (because of the —w option).
If the —w option was not present, they might match parts of words, resulting in a far
greater number of matches. Also note that although the * means to match any number
of characters, it also will match no characters as well; for example: t [a-1]*e could
actually match the letter sequence te, thatis, a t and an e with zero characters between
them.

Usually, you will use regular expressions to search for whole lines that match, and
sometimes you would like to match a line that begins or ends with a certain string. The
" character specifies the beginning of a line, and the $ character the end of the line. For
example, " The matches all lines that start with a The, and hack$ matches all lines that
end with hack,and ’ © *The.*hack *$’ matches all lines that begin with The and
end with hack, even if there is whitespace at the beginning or end of the line.

50

5. Regular Expressions 5.2. The fgrep Command

Because regular expressions use certain characters in a special way (these are . \
[] * + ?), these characters cannot be used to match characters. This restriction severely
limits you from trying to match, say, file names, which often use the . character. To
match a . you can use the sequence \ . which forces interpretation as an actual . and
not as a wildcard. Hence, the regular expression myfile.txt might match the let-
ter sequence myfileqgtxt ormyfile.txt, butthe regular expressionmyfile\.txt
will match only myfile.txt.

You can specify most special characters by adding a \ character before them, for
example, use \ [for an actual [, a \$ for an actual $, a \\ for and actual \, \+ for an
actual +, and \ ? for an actual 2. (? and + are explained below.)

5.2 The £grep Command

fgrep isan alternative to grep. The difference is that while grep (the more commonly
used command) matches regular expressions, £grep matches literal strings. In other
words you can use fgrep when you would like to search for an ordinary string that is
not a regular expression, instead of preceding special characters with \.

5.3 Regular Expression \ { \} Notation

x* matches zero to infinite instances of a character x. You can specify other ranges of
numbers of characters to be matched with, for example, x\ {3, 5\ }, which will match
at least three but not more than five x’s, that is xxx, xxxx, Or XXXxXX.

x\ {4\} can then be used to match 4 x’s exactly: no more and no less. x\ {7, \'}
will match seven or more x’s—the upper limit is omitted to mean that there is no
maximum number of x’s.

As in all the examples above, the x can be a range of characters (like [a-k]) just
as well as a single charcter.

grep —-w ‘th[a-t]\{2,3\}t’ Matches the words theft, thirst, threat,
thrift,and throat.

grep -w ‘th[a-t]\{4,5\}t’ Matches the words theorist, thicket, and
thinnest.

51

54.+ 2 \< \> () | Notation 5. Regular Expressions

5.4 Extended Regular Expression + ? \<\> () |
Notation with egrep

An enhanced version of regular expressions allows for a few more useful features.
Where these conflict with existing notation, they are only available through the egrep
command.

+ is analogous to \ {1, \}. It does the same as * but matches one or more characters
instead of zero or more characters.

? is analogous to “—1"”. It matches zero or one character.

\< \> can surround a string to match only whole words.

() cansurround several strings, separated by |. This notation will match any of these
strings. (egrep only.)

\ (\) can surround several strings, separated by \ |. This notation will match any of
these strings. (grep only.)

The following examples should make the last two notations clearer.

grep ’'trot’ Matches the words electrotherapist, betroth, and so on, but
grep ’'\<trot\>’ matches only the word trot.

egrep -w ' (this|that|c[aeiou] *t)’ Matches the words this, that, cot,
coat, cat, and cut.

5.5 Regular Expression Subexpressions

Subexpressions are covered in Chapter 8.

52

Chapter 6

Editing Text Files

To edit a text file means to interactively modify its content. The creation and modifi-
cation of an ordinary text file is known as text editing. A word processor is a kind of
editor, but more basic than that is the UNIX or DOS text editor.

6.1 wvi

The important editor to learn how to use is vi. After that you can read why, and a little
more about other, more user-friendly editors.

Type simply,

[vi <filename>]

to edit any file, or the compatible, but more advanced

Lvim <filename> j

To exit vi, press , then the key sequence : g! and then press -

vi has a short tutorial which should get you going in 20 minutes. If you get
bored in the middle, you can skip it and learn vi as you need to edit things. To read
the tutorial, enter:

[vimtutor]

which edits the file

53

6.1. vi 6. Editing Text Files

/usr/doc/vim-common—-5.7/tutor,
/usr/share/vim/vim56/tutor/tutor, or
/usr/share/doc/vim—common-5,7/tutor/tutor,

depending on your distribution. By this you should be getting an idea of the kinds of differences
there are between different LINUX distributions\. You will then see the following at the top of
your screen:

= Welcome t o t he vV IM Tutor - Version 1.4 .

Vim is a very powerful editor that has many commands, too many to
explain in a tutor such as this. This tutor is designed to describe
enough of the commands that you will be able to easily use Vim as

an all-purpose editor,

The approximate time required to complete the tutor is 25-30 minutes,

You are supposed to edit the tutor file itself as practice, following through 6
lessons. Copy it first to your home directory.

Table 6.1 is a quick reference for vi. It contains only a few of the many hundreds
of available commands but is enough to do all basic editing operations. Take note of
the following:

e vi has several modes of operation. If you press , you enter insert-mode. You
then enter text as you would in a normal DOS text editor, but you cannot arbitrarily

move the cursor and delete characters while in insert mode. Pressing will get you
out of insert mode, where you are not able to insert characters, but can now do
things like arbitrary deletions and moves.

e Pressing | B‘ (ie., :) gets you into command-line mode, where you can

do operations like importing files, saving of the current file, searches, and text

processing. Typically, you type : then some text, and then hit -

e The word register is used below. A register is a hidden clipboard.

e A useful tip is to enter :set ruler before doing anything. This shows, in the
bottom right corner of the screen, what line and column you are on.

54

6. Editing Text Files

6.1. vi

Table 6.1 Common vi commands

| Key combination

|

Function

or
or
or
or

]

Cursor left
Cursor right.
Cursor up.
Cursor down.

Cursor left one word.

Cursor right one word.
Cursor up one paragraph.
Cursor down one paragraph.

Cursor to line start.
Cursor to line end.

Cursor to first line.
Cursor to last line.

Get out of current mode.

o—'jﬂmgm S~ s T|— X — =

O

Q

Start insert mode.

Insert a blank line below the current
line and then start insert mode.

Insert a blank line above the current
line and then start insert mode.
Append (start insert mode after the
current character).

Replace (start insert mode with over-
write).

Save (write) and quit.

Quit.

Quit forced (without
whether a save is required).

checking

Delete (delete under cursor and copy
to register).

Backspace (delete left of cursor and
copy to register).

dd

Delete line (and copy to register).

Ctrl-J

Join line (remove newline at end of
current line).
Same.

Undo.

Ctrl-R

Redo.

de

55

Delete to word end (and copy to reg-
ister).

continues...

6.1. vi

6. Editing Text Files

Table 6.1 (continued)

Key combination |

Function |

db Delete to word start (and copy to reg-
ister).

ds$ Delete to line end (and copy to regis-
ter).

d* Delete to line beginning (and copy to
register).

dd Delete current line (and copy to regis-
ter).

2dd Delete two lines (and copy to register).

5dd Delete five lines (and copy to register).

p Paste clipboard (insert register).

Ctrl-G Show cursor position.

5G Cursor to line five.

16G Cursor to line sixteen.

G Cursor to last line.

/search-string
?search-string

Search forwards for search-string.
Search backwards for search-string.

: -1, $s/search-string/replace-string/ gc

Search and replace with confirmation
starting at current line.

:, $s/search-string / replace-string /gc

:, $s/\<search-string\ >/ replace-string / gc
: 8, 22s/search-string /replace-string/ g

: 55 /search-string / replace-string/ g

Search and replace with confirmation
starting at line below cursor.

Search and replace whole words.
Search and replace in lines 8 through
22 without confirmation.

Search and replace whole file without
confirmation.

:w filename
:5, 20w filename

:5, Sw! filename

Save to file filename.

Save lines 5 through 20 to file file-
name (use Ctrl-G to get line numbers
if needed).

Force save lines 5 through to last line
to file filename.

: ¢ filename Insert file filename.

v Visual mode (start highlighting).

y Copy highlighted text to register.

d Delete highlighted text (and copy to
register).

p Paste clipboard (insert register).

Press v, then move cursor
down a few lines, then,

56

Search and replace within
highlighted text.

continues...

6. Editing Text Files 6.2. Syntax Highlighting

Table 6.1 (continued)

| Key combination | Function |

: s/search-string / replace-string/ g

:help Reference manual (open new window
with help screen inside—probably the
most important command here!).

inew Open new blank window.

:split filename Open new window with filename.

e Close current window.

:ga Close all windows.

Ctrl-W j Move cursor to window below.

Ctrl-W k Move cursor to window above.

Ctrl-W - Make window smaller.

Ctrl-W + Make window larger.

6.2 Syntax Highlighting

Something all UNIX users are used to (and have come to expect) is syntax highlighting.
This basically means that a bash (explained later) script will look like:

#!/bin/sh #!/bin/sh

for fFile in ¥ 3 do for fFile in *¥ ; do

VAR= $File instead of VAR="cat $File"
$VAR | tr ’a-z’ ’A-2” echo SVAR | tr *a-z’ *A-2”
done

done

Syntax highlighting is meant to preempt programming errors by colorizing correct
keywords. You can set syntax highlighting in vim by using :syntax on (but not
in vi). Enable syntax highlighting whenever possible—all good text editors support
it.

6.3 Editors

Although UNIX has had full graphics capability for a long time now, most administra-
tion of low-level services still takes place inside text configuration files. Word process-
ing is also best accomplished with typesetting systems that require creation of ordinary
text files. “This is in spite of all the hype regarding the WYSIWYG (what you see is what you get) word
processor. This document itself was typeset with IKIEX and the Cooledit text editor™\

Historically, the standard text editor used to be ed. ed allows the user to see only
one line of text of a file at a time (primitive by today’s standards). Today, ed is mostly
used in its streaming version, sed. ed has long since been superseded by vi.

57

6.3. Editors 6. Editing Text Files

The editor is the place you will probably spend most of your time. Whether you
are doing word processing, creating web pages, programming, or administrating. It is
your primary interactive application.

6.3.1 Cooledit

(Read this if you “just-want-to-open-a-file-and-start-typing-like-under-Windows.”)

The best editor for day-to-day work is Cooledit, “ As Cooledit’s author, I am proba-
bly biased in this view™\ available from the Cooledit web page http://cooledit.sourceforge.net/.
Cooledit is a graphical (runs under X) editor. It is also a full-featured Integrated Devel-
opment Environment (IDE) for whatever you may be doing. Those considering buying
an IDE for development need look no further than installing Cooledit for free.

People coming from a Windows background will find Cooledit the easiest and
most powerful editor to use. It requires no tutelage; just enter cooledit under X and
start typing. Its counterpart in text mode is mcedit, which comes with the GNUZ®
Midnight Commander package mc. The text-mode version is inferior to other text
mode editors like emacs and jed but is adequate if you don’t spend a lot of time in
text mode.

Cooledit has pull-down menus and intuitive keys. It is not necessary to read any
documentation before using Cooledit.

6.3.2 viand vim

Today v1i is considered the standard. It is the only editor that will be installed by de-
fault on any UNIX system. vim is a “Charityware” version that (as usual) improves
upon the original vi with a host of features. It is important to learn the basics of vi
even if your day-to-day editor is not going to be vi. The reason is that every admin-
istrator is bound to one day have to edit a text file over some really slow network link
and vi is the best for this.

On the other hand, new users will probably find vi unintuitive and tedious and
will spend a lot of time learning and remembering how to do all the things they need
to. I myself cringe at the thought of vi pundits recommending it to new UNIX users.

In defense of vi, it should be said that many people use it exclusively, and it
is probably the only editor that really can do absolutely everything. It is also one of
the few editors that has working versions and consistent behavior across all UNIX and
non-UNIX systems. vim works on AmigaOS, AtariMiNT, BeOS, DOS, MacOS, OS/2,
RiscOS, VMS, and Windows (95/98/NT4/NT5/2000) as well as all UNIX variants.

58

6. Editing Text Files 6.3. Editors

6.3.3 Emacs

Emacs stands for Editor MACroS. It is the monster of all editors and can do almost
everything one could imagine that a single software package might. It has become a
de facto standard alongside vi.

Emacs is more than just a text editor. It is a complete system of using a computer
for development, communications, file management, and things you wouldn’t even
imagine there are programs for. There is even an X Window System version available
which can browse the web.

6.3.4 Other editors

Other editors to watch out for are joe, jed, nedit, pico, nano, and many others that
try to emulate the look and feel of well-known DOS, Windows, or Apple Mac devel-
opment environments, or to bring better interfaces by using Gtk/Gnome or Qt/KDE.
The list gets longer each time I look. In short, don’t think that the text editors that your
vendor has chosen to put on your CD are the best or only free ones out there. The same
goes for other applications.

59

6.3. Editors 6. Editing Text Files

60

Chapter 7

Shell Scripting

This chapter introduces you to the concept of computer programming. So far, you have
entered commands one at a time. Computer programming is merely the idea of getting
a number of commands to be executed, that in combination do some unique powerful
function.

7.1 Introduction

To execute a number of commands in sequence, create a file with a . sh extension, into
which you will enter your commands. The . sh extension is not strictly necessary but
serves as a reminder that the file contains special text called a shell script. From now
on, the word script will be used to describe any sequence of commands placed in a text
file. Now do a

[chmod 0755 myfile.sh]

which allows the file to be run in the explained way.

Edit the file using your favorite text editor. The first line should be as follows
with no whitespace. “\Whitespace are tabs and spaces, and in some contexts, newline (end of line)
characters™\

L#!/bin/sh J

The line dictates that the following program is a shell script, meaning that it accepts the
same sort of commands that you have normally been typing at the prompt. Now enter
a number of commands that you would like to be executed. You can start with

(echo "Hi there" W

61

7.2. Looping: the while and unt il Statements 7. Shell Scripting

echo "what is your name? (Type your name here and press Enter)"
read NM
echo "Hello SNM"

Now, exit from your editor and type . /myfile. sh. This will execute \ Cause the
computer to read and act on your list of commands, also called running the program. ™\ the file. Note
that typing . /myfile. sh is no different from typing any other command at the shell
prompt. Your filemyfile. sh has in fact become a new UNIX command all of its own.

Note what the read command is doing. It creates a pigeonhole called NM, and
then inserts text read from the keyboard into that pigeonhole. Thereafter, whenever
the shell encounters NV, its contents are written out instead of the letters NM (provided
you write a $ in front of it). We say that NM is a variable because its contents can vary.

You can use shell scripts like a calculator. Try

echo "I will work out X*Y"
echo "Enter X"

read X

echo "Enter Y"

read Y

echo "X*Y = $X*$Y = $[X*Y]"

The [and] mean that everything between must be evaluated ~Substituted, worked out, or
reduced to some simplified form. ™\ as a numerical expression (Sequence of numbers with +, -, *, etc.
between them. \.. You can, in fact, do a calculation at any time by typing at the prompt

[echo S[3*6+2*8+9]]

«Note that the shell that you are using allows such [] notation. On some UNIX systems you will have to
use the expr command to get the same effect

7.2 Looping to Repeat Commands: the while and until
Statements

The shell reads each line in succession from top to bottom: this is called program flow.
Now suppose you would like a command to be executed more than once—you would
like to alter the program flow so that the shell reads particular commands repeatedly.
The while command executes a sequence of commands many times. Here is an ex-
ample (-1e stands for less than or equal):

N=1
while test "SN" —-le "10"
do

62

7. Shell Scripting 7.3. Looping: the for Statement

echo "Number S$N"
N=S$ [N+1]
done

The N=1 creates a variable called N and places the number 1 into it. The while com-
mand executes all the commands between the do and the done repetitively until the
test condition is no longer true (i.e., until N is greater than 10). The -1e stands for
less than or equal to. See test(l) (thatis, run man 1 test) to learn about the other
types of tests you can do on variables. Also be aware of how N is replaced with a new
value that becomes 1 greater with each repetition of the while loop.

You should note here that each line is a distinct command—the commands are
newline-separated. You can also have more than one command on a line by separating
them with a semicolon as follows:

[Nzl ; while test "SN" -le "10"; do echo "Number SN"; N=$[N+1] ; done j

(Try counting down from 10 with —ge (greater than or equal).) It is easy to see that shell
scripts are extremely powerful, because any kind of command can be executed with
conditions and loops.

The until statement is identical to while except that the reverse logic is ap-
plied. The same functionality can be achieved with —gt (greater than):

EN:l ; until test "S$N" -gt "10"; do echo "Number $N"; N=$[N+1] ; done]

7.3 Looping to Repeat Commands: the for Statement

The for command also allows execution of commands multiple times. It works like
this:

for i in cows sheep chickens pigs
do
echo "$i is a farm animal"
done
echo -e "but\nGNUs are not farm animals"

The for command takes each string after the in, and executes the lines between
do and done with i substituted for that string. The strings can be anything (even
numbers) but are often file names.

The i f command executes a number of commands if a condition is met (—gt stands for
greater than, —1t stands for less than). The if command executes all the lines between
the i f and the £i (“if” spelled backwards).

63

10

7.3. Looping: the for Statement 7. Shell Scripting

X=10
Y=5
if test "$X" -gt "$Y" ; then
echo "$X is greater than $Y"
fi

The i f command in its full form can contain as much as:

X=10
Y=5
if test "$X" —gt "S$Y" ; then

echo "$X is greater than $Y"
elif test "$X" -1t "S$Y" ; then

echo "$X is less than S$Y"
else

echo "$X is equal to S$Y"
fi

Now let us create a script that interprets its arguments. Create a new script called
backup-lots.sh, containing:

#!/bin/sh

for i in 0 1 2 345 6 7 8 9 ; do
cp $1 $1.BAK-$i

done

Now create a file important_data with anything in it and then run . /backup-
lots.sh important_data, which will copy the file 10 times with 10 different exten-
sions. As you can see, the variable $1 has a special meaning—it is the first argument
on the command-line. Now let’s get a little bit more sophisticated (-e test whether the
file exists):

#!/bin/sh

if test "$1" = "" ; then
echo "Usage: backup-lots.sh <filename>"
exit

fi

for 1 in 01 2 3 45 6 7 8 9 ; do
NEW_FILE=$1.BAK-$1i
if test —-e SNEW_FILE ; then
echo "backup-lots.sh: **warning** S$NEW_FILE"
echo " already exists - skipping"
else
cp $1 SNEW_FILE

64

10

10

7. Shell Scripting 7.4. breaking Out of Loops and cont inueing

fi
done

7.4 breaking Out of Loops and continueing

A loop that requires premature termination can include the break statement within it:

#!/bin/sh
for i in 0 1 2 345 6 7 8 9 ; do
NEW_FILE=$1.BAK-S$1i
if test —-e SNEW_FILE ; then
echo "backup-lots.sh: **error** SNEW_FILE"

echo " already exists - exitting"
break

else
cp $1 SNEW_FILE

fi

done

which causes program execution to continue on the line after the done. If two loops
are nested within each other, then the command break 2 causes program execution
to break out of both loops; and so on for values above 2.

The continue statement is also useful for terminating the current iteration of
the loop. This means that if a continue statement is encountered, execution will
immediately continue from the top of the loop, thus ignoring the remainder of the
body of the loop:

#!/bin/sh
for 1 in 01 2 345 6 78 9 ; do
NEW_FILE=$1.BAK-$1i
if test —-e SNEW_FILE ; then
echo "backup-lots.sh: **warning** $SNEW_FILE"
echo " already exists - skipping"
continue
fi
cp $1 SNEW_FILE
done

Note that both break and cont inue work inside for, while,and until loops.

65

10

15

7.5. Looping Over Glob Expressions 7. Shell Scripting

7.5 Looping Over Glob Expressions

We know that the shell can expand file names when given wildcards. For instance, we
can type 1s *.txt to list all files ending with . txt. This applies equally well in any
situation, for instance:

#!/bin/sh
for i in *.txt ; do

echo "found a file:" $i
done

The *.txt is expanded to all matching files. These files are searched for in the cur-
rent directory. If you include an absolute path then the shell will search in that directory:

#!/bin/sh

for i in /usr/doc/*/*.txt ; do
echo "found a file:" $i

done

This example demonstrates the shell’s ability to search for matching files and
expand an absolute path.

7.6 The case Statement

The case statement can make a potentially complicated program very short. It is best
explained with an example.

#!/bin/sh
case $1 in
-—test|-t)
echo "you used the —--test option"
exit 0O
I
—-help|-h)
echo "Usage:"
echo " myprog.sh [--test]|--help|--version]"
exit 0
I
—--version|-v)
echo "myprog.sh version 0.0.1"
exit 0
I
_*)
echo "No such option $1"
echo "Usage:"

66

20

10

20

7. Shell Scripting 7.7. Using Functions: the function Keyword

echo " myprog.sh [--test|--help|--version]"
exit 1

esac

echo "You typed \"S$1\" on the command-line"

Above you can see that we are trying to process the first argument to a program.
It can be one of several options, so using if statements will result in a long program.
The case statement allows us to specify several possible statement blocks depending
on the value of a variable. Note how each statement block is separated by ; ;. The
strings before the) are glob expression matches. The first successful match causes that
block to be executed. The | symbol enables us to enter several possible glob expres-
sions.

7.7 Using Functions: the function Keyword

So far, our programs execute mostly from top to bottom. Often, code needs to be re-
peated, but it is considered bad programming practice to repeat groups of statements
that have the same functionality. Function definitions provide a way to group state-
ment blocks into one. A function groups a list of commands and assigns it a name. For
example:

#!/bin/sh

function usage ()
{
echo "Usage:"
echo " myprog.sh [-—-test|--help|--version]"

}

case $1 in

—-—test|-t)
echo "you used the —--test option"
exit O

——help|-h)
usage

P

—-—version|-v)
echo "myprog.sh version 0.0.2"
exit 0

i

_*)

67

25

7.8. Properly Processing Command-Line Args: shift 7. Shell Scripting

echo "Error: no such option $1"
usage
exit 1
P
esac

echo "You typed \"$1\" on the command-line"

Wherever the usage keyword appears, it is effectively substituted for the two
lines inside the { and }. There are obvious advantages to this approach: if you would
like to change the program usage description, you only need to change it in one place
in the code. Good programs use functions so liberally that they never have more than
50 lines of program code in a row.

7.8 Properly Processing Command-Line Arguments: the
shift Keyword

Most programs we have seen can take many command-line arguments, sometimes in
any order. Here is how we can make our own shell scripts with this functionality. The
command-line arguments can be reached with $1, $2, etc. The script,

#!/bin/sh

echo "The first argument is: $1, second argument is: $2, third argument is: $3"

can be run with

[@yfile.sh dogs cats birds]

and prints

[The first argument is: dogs, second argument is: cats, third argument is: birds]

Now we need to loop through each argument and decide what to do with it. A
script like

for 1 in $1 $2 $3 $4 ; do
<statments>
done

doesn’t give us much flexibilty. The shift keyword is meant to make things easier.
It shifts up all the arguments by one place so that $1 gets the value of $2, $2 gets the
value of $3, and so on. (!= tests that the "$1" is not equal to " ", that is, whether it is
empty and is hence past the last argument.) Try

68

10

15

20

25

30

7. Shell Scripting 7.8. Properly Processing Command-Line Args: shift

while test "$1" != "" ; do
echo $1
shift

done

and run the program with lots of arguments.

Now we can put any sort of condition statements within the loop to process the

arguments in turn:

#!/bin/sh

function usage ()
{

echo "Usage:"

echo " myprog.sh [--test]|--help|--version] [--echo
}
while test "$1" != "" ; do
case $1 in
——echo|-e)
echo "s$2"
shift
i
——test|-t)

echo "you used the —--test option"
——help|-h)
usage
exit O
i
——version|-v)
echo "myprog.sh version 0.0.3"
exit 0
i
_*)
echo "Error: no such option $1"
usage
exit 1
i
esac
shift
done

<text>]"

myprog. sh can now run with multiple arguments on the command-line.

69

7.9. More on Command-Line Arguments: $@ and $0 7. Shell Scripting

7.9 More on Command-Line Arguments: $@ and $0

Whereas $1, $2, $3, etc. expand to the individual arguments passed to the program, $@
expands to all arguments. This behavior is useful for passing all remaining arguments
onto a second command. For instance,

if test "$1" = "--special" ; then
shift
myprog2.sh "s$@"

fi

$0 means the name of the program itself and not any command-line argument. It is the
command used to invoke the current program. In the above cases, it is . /myprog. sh.
Note that $0 is immune to shift operations.

7.10 Single Forward Quote Notation

Single forward quotes ’ protect the enclosed text from the shell. In other words,
you can place any odd characters inside forward quotes, and the shell will treat them
literally and reproduce your text exactly. For instance, you may want to echo an actual
$ to the screen to produce an output like costs $1000. You can use echo ’costs
$1000’ instead of echo "costs $1000".

7.11 Double-Quote Notation

Double quotes " have the opposite sense of single quotes. They allow all shell inter-
pretations to take place inside them. The reason they are used at all is only to group
text containing whitespace into a single word, because the shell will usually break up
text along whitespace boundaries. Try,

for i in "henry john mary sue" ; do
echo "$i is a person"
done

compared to

for i in henry john mary sue ; do
echo $1i is a person
done

70

7. Shell Scripting 7.12. Backward-Quote Substitution

7.12 Backward-Quote Substitution

Backward quotes ' have a special meaning to the shell. When a command is inside
backward quotes it means that the command should be run and its output substituted
in place of the backquotes. Take, for example, the cat command. Create a small file,
to_be_catted, with only the text daisy inside it. Create a shell script

X=‘cat to_be_catted®
echo $X

The value of X is set to the output of the cat command, which in this case is the
word daisy. This is a powerful tool. Consider the expr command:

X=‘expr 100 + 50 ’*’ 3"
echo $X

Hence we can use expr and backquotes to do mathematics inside our shell script.
Here is a function to calculate factorials. Note how we enclose the * in forward quotes.
They prevent the shell from expanding the * into matching file names:

function factorial ()
{
N=$1
A=1
while test $N -gt 0 ; do
A=‘expr S$A ’'*’ SN
N=‘expr $N - 1‘
done
echo S$A

We can see that the square braces used further above can actually suffice for most
of the times where we would like to use expr. (However, $ [] notation is an extension
of the GNU% shells and is not a standard feature on all varients of UNIX.) We can now
run factorial 20 and see the output. If we want to assign the output to a variable,
we can do this with Xx="factorial 20°.

Note that another notation which gives the effect of a backward quote is $ (command),
which is identical to ‘command*. Here, I will always use the older backward quote
style.

71

7.12. Backward-Quote Substitution 7. Shell Scripting

72

Chapter 8

Streams and sed — The Stream
Editor

The ability to use pipes is one of the powers of UNIX. This is one of the principle
deficiencies of some non-UNIX systems. Pipes used on the command-line as explained
in this chapter are a neat trick, but pipes used inside C programs enormously simplify
program interaction. Without pipes, huge amounts of complex and buggy code usually
needs to be written to perform simple tasks. It is hoped that this chapter will give the
reader an idea of why UNIX is such a ubiquitous and enduring standard.

8.1 Introduction

The commands grep, echo, df and so on print some output to the screen. In fact,
what is happening on a lower level is that they are printing characters one by one
into a theoretical data stream (also called a pipe) called the stdout pipe. The shell itself
performs the action of reading those characters one by one and displaying them on the
screen. The word pipe itself means exactly that: A program places data in the one end
of a funnel while another program reads that data from the other end. Pipes allow two
separate programs to perform simple communications with each other. In this case,
the program is merely communicating with the shell in order to display some output.

The same is true with the cat command explained previously. This command,
when run with no arguments, reads from the stdin pipe. By default, this pipe is the key-
board. One further pipe is the stderr pipe to which a program writes error messages.
It is not possible to see whether a program message is caused by the program writing
to its stderr or stdout pipe because usually both are directed to the screen. Good pro-
grams, however, always write to the appropriate pipes to allow output to be specially
separated for diagnostic purposes if need be.

73

8.2. Tutorial 8. Streams and sed — The Stream Editor

8.2 Tutorial

Create a text file with lots of lines that contain the word GNU and one line that
contains the word GNU as well as the word Linux. Then run grep GNU my-
file.txt. The result is printed to stdout as usual. Now try grep GNU my-
file.txt > gnu_lines,txt. Whatishappening here is that the output of the grep
command is being redirected into a file. The > gnu_lines.txt tells the shell to cre-
ate a new file gnu_lines.txt and to fill it with any output from stdout instead of
displaying the output as it usually does. If the file already exists, it will be truncated.
«Shortened to zero length ™\

Now suppose you want to append further output to this file. Using >> instead
of > does not truncate the file, but appends output to it. Try

[echo "morestuff" >> gnu_lines.txt j

then view the contents of gnu_lines.txt.

8.3 Piping Using | Notation

The real power of pipes is realized when one program can read from the output of
another program. Consider the grep command, which reads from stdin when given
no arguments; run grep with one argument on the command-line:

[root@cericon] # grep GNU

A line without that word in it
Another line without that word in it
A line with the word GNU in it

A line with the word GNU in it

I have the idea now

~C

#

grep’s default behavior is to read from stdin when no files are given. As you can
see, it is doing its usual work of printing lines that have the word GNU in them. Hence,
lines containing GNU will be printed twice—as you type them in and again when grep
reads them and decides that they contain GNU.

Now try grep GNU myfile.txt | grep Linux. The first grep outputs all
lines with the word GNU in them to stdout. The | specifies that all stdout is to be typed
as stdin (as we just did above) into the next command, which is also a grep command.
The second grep command scans that data for lines with the word Linux in them.
grep is often used this way as a filter “ Something that screens data™\. and can be used
multiple times, for example,

74

8. Streams and sed — The Stream Editor 8.4. A Complex Piping Example

[grep L myfile.txt | grep i | grep n | grep u | grep x J

The < character redirects the contents of a file in place of stdin. In other words,
the contents of a file replace what would normally come from a keyboard. Try

[grep GNU < gnu_lines.txt j

8.4 A Complex Piping Example

In Chapter 5 we used grep on a dictionary to demonstrate regular expressions.
This is how a dictionary of words can be created (your dictionary might be under
/var/share/ orunder /usr/lib/aspell instead):

cat /usr/lib/ispell/english.hash | strings | tr "A-Z' ’'a-z’ \
| grep ' " [a-z]’ | sort -u > mydict

A backslash \ as the last character on a line indicates that the line is to be continued. You can leave out
the \ but then you must leave out the newline as well — this is known as line continuation\

The file english.hash contains the UNIX dictionary normally used for spell
checking. With a bit of filtering, you can create a dictionary that will make solving
crossword puzzles a breeze. First, we use the command strings, explained previ-
ously, to extract readable bits of text. Here we are using its alternate mode of operation
where it reads from stdin when no files are specified on its command-line. The com-
mand tr (abbreviated from translate—see tr(1)) then converts upper to lower case.
The grep command then filters out lines that do not start with a letter. Finally, the
sort command sorts the words in alphabetical order. The —u option stands for unigue,
and specifies that duplicate lines of text should be stripped. Now try less mydict.

8.5 Redirecting Streams with >&

Try the command 1s nofile.txt > A.Weexpectthat1ls will give an error message
if the file doesn’t exist. The error message is, however, displayed and not written into
the file A. The reason is that 1s has written its error message to stderr while > has only
redirected stdout. The way to get both stdout and stderr to both go to the same file is
to use a redirection operator. As far as the shell is concerned, stdout is called 1 and stderr
is called 2, and commands can be appended with a redirection like 2>&1 to dictate that
stderr is to be mixed into the output of stdout. The actual words stderr and stdout are
only used in C programming, where the number 1, 2 are known as file numbers or file
descriptors. Try the following:

75

8.5. Redirecting Streams with >& 8. Streams and sed — The Stream Editor

touch existing_file
rm —-f non-existing_ file
ls existing_file non-existing_file

1s will output two lines: a line containing a listing for the file existing_file
and a line containing an error message to explain that the file non-existing_file
does not exist. The error message would have been written to stderr or file descriptor
number 2, and the remaining line would have been written to stdout or file descriptor
number 1.

Next we try

ls existing_file non-existing_file 2>A
cat A

Now A contains the error message, while the remaining output came to the
screen. Now try

ls existing_file non-existing_file 1>A
cat A

The notation 1>A is the same as >A because the shell assumes that you are referring to
file descriptor 1 when you don’t specify a file descriptor. Now A contains the stdout
output, while the error message has been redirected to the screen.

Now try

ls existing_file non-existing_file 1>A 2>&1
cat A

Now A contains both the error message and the normal output. The >s& is called a
redirection operator. x>&y tells the shell to write pipe x into pipe y. Redirection is specified
from right to left on the command-line. Hence, the above command means to mix stderr
into stdout and then to redirect stdout to the file A.

Finally,

ls existing_file non-existing_file 2>A 1>&2
cat A

We notice that this has the same effect, except that here we are doing the reverse: redi-
recting stdout into stderr and then redirecting stderr into a file A.

To see what happens if we redirect in reverse order, we can try,

76

8. Streams and sed — The Stream Editor 8.6. Using sed to Edit Streams

ls existing_file non-existing_file 2>&1 1>A
cat A

which means to redirect stdout into a file A, and then to redirect stderr into stdout. This
command will therefore not mix stderr and stdout because the redirection to A came
first.

8.6 Using sed to Edit Streams

ed used to be the standard text editor for UNIX. It is cryptic to use but is compact and
programmable. sed stands for stream editor and is the only incarnation of ed that is
commonly used today. sed allows editing of files non-interactively. In the way that
grep can search for words and filter lines of text, sed can do search-replace opera-
tions and insert and delete lines into text files. sed is one of those programs with no
man page to speak of. Do info sed to see sed’s comprehensive info pages with
examples.

The most common usage of sed is to replace words in a stream with alterna-
tive words. sed reads from stdin and writes to stdout. Like grep, it is line buffered,
which means that it reads one line in at a time and then writes that line out again after
performing whatever editing operations. Replacements are typically done with

cat <file> | sed -e ’'s/<search-regexp>/<replace-text>/<option>’ \
> <resultfile>

where <search-regexp> is a regular expression, <replace-text> is the text you

would like to replace each occurrence with, and <option> is nothing or g, which
means to replace every occurrence in the same line (usually sed just replaces the first
occurrence of the regular expression in each line). (There are other <opt ion>; see the
sed info page.) For demonstration, type

[sed -e "s/e/E/g’ j

and type out a few lines of English text.

8.7 Regular Expression Subexpressions

The section explains how to do the apparently complex task of moving text around
within lines. Consider, for example, the output of 1s: say you want to automatically
strip out only the size column—sed can do this sort of editing if you use the special
\ (\) notation to group parts of the regular expression together. Consider the follow-
ing example:

77

8.7. Regular Expression Subexpressions 8. Streams and sed — The Stream Editor

[Sed —e "s/NAIT ITAN>N)N(L TN T*\>\) /\3\2\1/g”’ J

Here sed is searching for the expression \<.*\>[]*\<,*\>. From the chapter on
regular expressions, we can see that it matches a whole word, an arbitrary amount
of whitespace, and then another whole word. The \ (\) groups these three so that
they can be referred to in <replace-text>. Each part of the regular expression
inside \ (\) is called a subexpression of the regular expression. Each subexpres-
sion is numbered—namely, \1, \2, etc. Hence, \1 in <replace-text> is the first
\<[~ 1*\>,\2is []1*,and \3isthesecond \<[~]*\>.

Now test to see what happens when you run this:

sed —e "s/N(\<[™ TA\>\)\N (L T*\)N(\<[™ I*\>\)/\3\2\1/g’
GNU Linux is cool
Linux GNU cool is

To return to our 1s example (note that this is just an example, to count file sizes
you should instead use the du command), think about how we could sum the bytes
sizes of all the files in a directory:

expr 0 ‘1s -1 | grep ""=" | \
sed "s/°N(L" I*0 T*\)N{4,4\}\([0-9]*\).*s/ + \2/""

We know that 1s -1 output lines start with - for ordinary files. So we use grep to
strip lines not starting with —. If wedoan 1s -1, we see that the output is divided into
four columns of stuff we are not interested in, and then a number indicating the size of
the file. A column (or field) can be described by the regular expression [~]*[]*,that
is, a length of text with no whitespace, followed by a length of whitespace. There are
four of these, so we bracket it with \ (\) and then use the \ { \} notation to specify
that we want exactly 4. After that come our number [0-9] *, and then any trailing
characters, which we are not interested in, . *$. Notice here that we have neglected
to use \< \> notation to indicate whole words. The reason is that sed tries to match
the maximum number of characters legally allowed and, in the situation we have here,
has exactly the same effect.

If you haven't yet figured it out, we are trying to get that column of byte sizes
into a format like

438
1525
76
92146

+ + + +

so that expr can understand it. Hence, we replace each line with subexpression \ 2 and
a leading + sign. Backquotes give the output of this to expr, which studiously sums

78

8. Streams and sed — The Stream Editor 8.8. Inserting and Deleting Lines

them, ignoring any newline characters as though the summation were typed in on a
single line. There is one minor problem here: the first line contains a + with nothing
before it, which will cause expr to complain. To get around this, we can just add a 0
to the expression, so that it becomes 0 +....

8.8 Inserting and Deleting Lines

sed can perform a few operations that make it easy to write scripts that edit configu-
ration files for you. For instance,

sed -e ’7a\

an extra line.\
another one.\
one more,’

appends three lines after line 7, whereas

sed —e ’7i\

an extra line.\
another one.\
one more,’

inserts three lines before line 7. Then

[sed -e ’3,5D j

Deletes lines 3 through 5.

In sed terminology, the numbers here are called addresses, which can also be
regular expressions matches. To demonstrate:

Esed -e ' /Dear Henry/,/Love Jane/D’]

deletes all the lines starting from a line matching the regular expression Dear Henry
up to a line matching Love Jane (or the end of the file if one does not exist).

This behavior applies just as well to to insertions:

sed —e ’/Love Jane/i\
Love Carol\
Love Beth’

Note that the $ symbol indicates the last line:

sed —e ’S$i\
The new second last line\

79

8.8. Inserting and Deleting Lines 8. Streams and sed — The Stream Editor

tThe new last line.’ J

and finally, the negation symbol, !, is used to match all lines not specified; for instance,

Esed -e '7,11'D’ j

deletes all lines except lines 7 through 11.

80

Chapter 9

Processes and Environment
Variables

From this chapter you will get an idea about what is happening under the hood of your
UNIX system, but go have some coffee first.

9.1 Introduction

On UNIX, when you run a program (like any of the shell commands you have been
using), the actual computer instructions are read from a file on disk from one of the
bin/ directories and placed in RAM. The program is then executed in memory and
becomes a process. A process is some command /program/shell-script that is being run
(or executed) in memory. When the process has finished running, it is removed from
memory. There are usually about 50 processes running simultaneously at any one time
on a system with one person logged in. The CPU hops between each of them to give a
share of its execution time. ~ Time given to carry out the instructions of a particular program. Note this
is in contrast to Windows or DOS where the program itself has to allow the others a share of the CPU: under
UNIX, the process has no say in the matter. \Each process is given a process number called the
PID (process ID). Besides the memory actually occupied by the executable, the process
itself seizes additional memory for its operations.

In the same way that a file is owned by a particular user and group, a process
also has an owner—usually the person who ran the program. Whenever a process
tries to access a file, its ownership is compared to that of the file to decide if the access
is permissible. Because all devices are files, the only way a process can do anything is
through a file, and hence file permission restrictions are the only kind of restrictions
ever needed on UNIX. N\ There are some exceptions to this™\. This is how UNIX access control
and security works.

81

9.2. ps — List Running Processes 9. Processes, Environment Variables

The center of this operation is called the UNIX kernel. The kernel is what actually
does the hardware access, execution, allocation of process IDs, sharing of CPU time,
and ownership management.

9.2 ps — List Running Processes

Log in on a terminal and type the command ps. You should get some output like:

PID TTY STAT TIME COMMAND

5995 28 0:00 /bin/login —-- myname
5999 2 S 0:00 -bash

6030 2 R 0:00 ps

ps with no options shows three processes to be running. These are the only three
processes visible to you as a user, although there are other system processes not be-
longing to you. The first process was the program that logged you in by displaying
the login prompt and requesting a password. It then ran a second process call bash,
the Bourne Again shell \ The Bourne shell was the original UNIx shel\ where you have been
typing commands. Finally, you ran ps, which must have found itself when it checked
which processes were running, but then exited immediately afterward.

9.3 Controlling Jobs

The shell has many facilities for controlling and executing processes—this is called job
control. Create a small script called proc. sh:

#!/bin/sh
echo "proc.sh: is running"
sleep 1000

Run the script with chmod 0755 proc.sh and then ./proc.sh. The shell
blocks, waiting for the process to exit. Now press “Z. This will cause the process to
stop (that is, pause but not terminate). Now do a ps again. You will see your script
listed. However, it is not presently running because it is in the condition of being
stopped. Type bg (for background). The script will now be “unstopped” and run in the
background. You can now try to run other processes in the meantime. Type f£g, and
the script returns to the foreground. You can then type “C to interrupt the process.

82

9. Processes, Environment Variables 9.4. Creating Background Processes

9.4 Creating Background Processes

Create a program that does something a little more interesting:

#!/bin/sh
echo "proc.sh: is running"
while true ; do
echo —-e "\a’
sleep 2
done

Now perform the "Z, bg, £g, and "C operations from before. To put a process immedi-
ately into the background, you can use:

[./proc.sh & j

The JOB CONTROL section of the bash man page (bash(1)) looks like this!: (the
footnotes are mine)

JOB CONTROL

Job control refers to the ability to selectively stop (suspend) the execution of processes
and continue (resume) their execution at a later point. A user typically employs this
facility via an interactive interface supplied jointly by the system’s terminal driver
and bash.

The shell associates a job with each pipeline. ~What does this mean? It means
that each time you execute something in the background, it gets its own unique number,
called the job number™\ It keeps a table of currently executing jobs, which may be
listed with the jobs command. When bash starts a job asynchronously (in the
background), it prints a line that looks like:

[1] 25647

indicating that this job is job number 1 and that the process ID of the last pro-
cess in the pipeline associated with this job is 25647. All of the processes in a single
pipeline are members of the same job. Bash uses the job abstraction as the basis for
job control.

To facilitate the implementation of the user interface to job control, the system
maintains the notion of a current terminal process group ID. Members of this process
group (processes whose process group ID is equal to the current terminal process
group ID) receive keyboard-generated signals such as SIGINT. These processes are
said to be in the foreground. Background processes are those whose process group
ID differs from the terminal’s; such processes are immune to keyboard-generated

IThanks to Brian Fox and Chet Ramey for this material.

83

9.5. killing a Process, Sending Signals 9. Processes, Environment Variables

signals. Only foreground processes are allowed to read from or write to the termi-
nal. Background processes which attempt to read from (write to) the terminal are
sent a SIGTTIN (SIGTTOU) signal by the terminal driver, which, unless caught,
suspends the process.

If the operating system on which bash is running supports job control, bash
allows you to use it. Typing the suspend character (typically "Z, Control-Z) while
a process is running causes that process to be stopped and returns you to bash.
Typing the delayed suspend character (typically "Y, Control-Y) causes the process
to be stopped when it attempts to read input from the terminal, and control to
be returned to bash. You may then manipulate the state of this job, using the bg
command to continue it in the background, the fg command to continue it in the
foreground, or the kill command to kill it. A "Z takes effect immediately, and has
the additional side effect of causing pending output and typeahead to be discarded.

There are a number of ways to refer to a job in the shell. The character % in-
troduces a job name. Job number 1 may be referred to as %n. A job may also be
referred to using a prefix of the name used to start it, or using a substring that
appears in its command line. For example, %ce refers to a stopped ce job. If a
prefix matches more than one job, bash reports an error. Using %?ce, on the other
hand, refers to any job containing the string ce in its command line. If the substring
matches more than one job, bash reports an error. The symbols %% and %+ refer
to the shell’s notion of the current job, which is the last job stopped while it was in
the foreground. The previous job may be referenced using %-. In output pertaining
to jobs (e.g., the output of the jobs command), the current job is always flagged
with a +, and the previous job with a -.

Simply naming a job can be used to bring it into the foreground: %1 is a syn-
onym for “fg %1”, bringing job 1 from the background into the foreground.
Similarly, “%1 &” resumes job 1 in the background, equivalent to “bg %1”.

The shell learns immediately whenever a job changes state. Normally, bash
waits until it is about to print a prompt before reporting changes in a job’s status
so as to not interrupt any other output. If the -b option to the set builtin command
is set, bash reports such changes immediately. (See also the description of notify
variable under Shell Variables above.)

If you attempt to exit bash while jobs are stopped, the shell prints a message
warning you. You may then use the jobs command to inspect their status. If you

do this, or try to exit again immediately, you are not warned again, and the stopped
jobs are terminated.

9.5 killing a Process, Sending Signals

To terminate a process, use the kill command:

84

9. Processes, Environment Variables 9.5. ki11ling a Process, Sending Signals

[kill <PID> J

The k111 command actually sends a termination signal to the process. The sending of a
signal simply means that the process is asked to execute one of 30 predefined functions.
In some cases, developers would not have bothered to define a function for a particular
signal number (called catching the signal); in which case the kernel will substitute the
default behavior for that signal. The default behavior for a signal is usually to ignore
the signal, to stop the process, or to terminate the process. The default behavior for the
termination signal is to terminate the process.

To send a specific signal to a process, you can name the signal on the command-
line or use its numerical equivalent:

[kill —SIGTERM 12345 j
or
[kill -15 12345]

which is the signal that k111 normally sends when none is specified on the command-
line.

To unconditionally terminate a process:

[kill —SIGKILL 12345]
or
[kill -9 12345 j

which should only be used as a last resort. Processes are prohibited from ever catching the
SIGKILL signal.

It is cumbersome to have to constantly look up the PID of a process. Hence the

GNU%? utilities have a command, ki11a1l1, that sends a signal to all processes of the
same name:

[killall —<signal> <process_name>]

This command is useful when you are sure that there is only one of a process running,
either because no one else is logged in on the system or because you are not logged in
as superuser. Note that on other UNIX systems, the ki1lall command kills all the processes
that you are allowed to kill. If you are root, this action would crash the machine.

85

9.6. List of Common Signals 9. Processes, Environment Variables

9.6 List of Common Signals

The full list of signals can be gotten from signal(7), and in the file
/usr/include/asm/signal.h.

SIGHUP (1) Hang up. If the terminal becomes disconnected from a process, this signal
is sent automatically to the process. Sending a process this signal often causes
it to reread its configuration files, so it is useful instead of restarting the process.
Always check the man page to see if a process has this behavior.

SIGINT (2) Interrupt from keyboard. Issued if you press "C.
SIGQUIT (3) Quit from keyboard. Issued if you press "D.

SIGFPE (8) Floating point exception. Issued automatically to a program performing
some kind of illegal mathematical operation.

SIGKILL (9) Kill signal. This is one of the signals that can never be caught by a process.
If a process gets this signal it must quit immediately and will not perform any
clean-up operations (like closing files or removing temporary files). You can send
a process a SIGKILL signal if there is no other means of destroying it.

SIGUSR1 (10), SIGUSR2 (12) User signal. These signals are available to developers
when they need extra functionality. For example, some processes begin logging
debug messages when you send them SIGUSRI.

SIGSEGV (11) Segmentation violation. Issued automatically when a process tries to ac-
cess memory outside of its allowable address space, equivalent to a Fatal Excep-
tion or General Protection Fault under Windows. Note that programs with bugs
or programs in the process of being developed often get these signals. A program
receiving a SIGSEGV, however, can never cause the rest of the system to be com-
promised. If the kernel itself were to receive such an error, it would cause the
system to come down, but such is extremely rare.

SIGPIPE (13) Pipe died. A program was writing to a pipe, the other end of which is
no longer available.

SIGTERM (15) Terminate. Cause the program to quit gracefully

SIGCHLD (17) Child terminate. Sent to a parent process every time one of its spawned
processes dies.

86

9. Processes, Environment Variables 9.7. Niceness of Processes, Scheduling Priority

9.7 Niceness of Processes, Scheduling Priority

All processes are allocated execution time by the kernel. If all processes were allocated
the same amount of time, performance would obviously get worse as the number of
processes increased. The kernel uses heuristics N\ Sets of rules™\ to guess how much time
each process should be allocated. The kernel tries to be fair—two users competing for
CPU usage should both get the same amount.

Most processes spend their time waiting for either a key press, some network
input, some device to send data, or some time to elapse. They hence do not consume
CPU.

On the other hand, when more than one process runs flat out, it can be difficult for
the kernel to decide if it should be given greater priority than another process. What if a
process is doing some operation more important than another process? How does the
kernel tell? The answer is the UNIX feature of scheduling priority or niceness. Scheduling
priority ranges from +20 to -20. You can set a process’s niceness with the renice
command.

renice <priority> <pid>
renice <priority> -u <user>
renice <priority> -g <group>

A typical example is the SETI program. “SETI stands for Search for Extraterrestrial In-
telligence. SETI is an initiative funded by various obscure sources to scan the skies for radio signals from
other civilizations. The data that SETI gathers has to be intensively processed. SETI distributes part of that
data to anyone who wants to run a set i program in the background. This puts the idle time of millions of
machines to “good” use. There is even a SETI screen-saver that has become quite popular. Unfortunately
for the colleague in my office, he runs seti at —19 instead of +19 scheduling priority, so nothing on his
machine works right. On the other hand, I have inside information that the millions of other civilizations in
this galaxy and others are probably not using radio signals to communicate at all :-)\ Set its priority to
+19 with:

[renice +19 <pid>]

to make it disrupt your machine as little as possible.

Note that nice values have the reverse meaning that you would expect: +19 means a
process that eats little CPU, while —19 is a process that eats lots. Only superuser can set
processes to negative nice values.

Mostly, multimedia applications and some device utilities are the only processes
that need negative renicing, and most of these will have their own command-line op-
tions to set the nice value. See, for example, cdrecord(l) and mikmod(1) — a negative
nice value will prevent skips in your playback. “(LiNuX will soon have so called rea! time pro-
cess scheduling. This is a kernel feature that reduces scheduling latency (the gaps between CPU execution

87

9.8. Process CPU/Memory Consumption, top 9. Processes, Environment Variables

time of a process, as well as the time it takes for a process to wake). There are already some kernel patches
that accomplish this goal ™\

Also useful are the —u and —g options, which set the priority of all the processes
that a user or group owns.

Further, we have the nice command, which starts a program under a defined
niceness relative to the current nice value of the present user. For example,

nice +<priority> <pid>
nice —<priority> <pid>

Finally, the snice command can both display and set the current niceness. This
command doesn’t seem to work on my machine.

Esnice -v <pid> j

9.8 Process CPU/Memory Consumption, top

The top command sorts all processes by their CPU and memory consumption and
displays the top twenty or so in a table. Use top whenever you want to see what’s
hogging your system. top —-q -d 2 is useful for scheduling the t op command itself
to a high priority, so that it is sure to refresh its listing without lag. top -n 1 -b >
top.txt lists all processes,and top -n 1 -b -p <pid> prints information on one
process.

top has some useful interactive responses to key presses:

f Shows a list of displayed fields that you can alter interactively. By default the only
fields shown are USER PRI NI SIZE RSS SHARE STAT %CPU $MEM TIME
COMMAND which is usually what you are most interested in. (The field meanings
are given below.)

r Renices a process.

k Kills a process.

The top man page describes the field meanings. Some of these are confusing and
assume knowledge of the internals of C programs. The main question people ask is:
How much memory is a process using? The answer is given by the RSS field, which stands
for Resident Set Size. RSS means the amount of RAM that a process consumes alone.
The following examples show totals for all processes running on my system (which
had 65536 kilobytes of RAM at the time). They represent the total of the SIZE, RSS,
and SHARE fields, respectively.

88

9. Processes, Environment Variables ~ 9.8. Process CPU/Memory Consumption, top

echo ‘echo 0 ' ; top -g -n 1 -b | sed -e ’1,/PID *USER *PRI/D’ | \
awk ' {print "+4" $5}’ | sed —-e ’'s/M/*1024/’ | bc

68016

echo ‘echo 0 " ; top -9 -n 1 -b | sed —-e '1,/PID *USER *PRI/D’ | \
awk ’{print "+" $6}’ | sed -e ’'s/M/*1024/" | bc

58908

echo ‘echo 0 " ; top -q -n 1 -b | sed —-e "1,/PID *USER *PRI/D’ | \
awk ' {print "+" $7}’ | sed -e "s/M/*1024/’"" | bc

30184

The SIZE represents the total memory usage of a process. RSS is the same, but ex-
cludes memory not needing actual RAM (this would be memory swapped to the swap
partition). SHARE is the amount shared between processes.

Other fields are described by the t op man page (quoted verbatim) as follows:

uptime This line displays the time the system has been up, and the three load
averages for the system. The load averages are the average number of pro-
cesses ready to run during the last 1, 5 and 15 minutes. This line is just like the
output of uptime(1). The uptime display may be toggled by the interactive 1
command.

processes The total number of processes running at the time of the last update.
This is also broken down into the number of tasks which are running, sleeping,
stopped, or undead. The processes and states display may be toggled by the t
interactive command.

CPU states Shows the percentage of CPU time in user mode, system mode, niced
tasks, and idle. (Niced tasks are only those whose nice value is negative.) Time
spent in niced tasks will also be counted in system and user time, so the total
will be more than 100%. The processes and states display may be toggled by
the t interactive command.

Mem Statistics on memory usage, including total available memory, free memory,
used memory, shared memory, and memory used for buffers. The display of
memory information may be toggled by the m interactive command.

Swap Statistics on swap space, including total swap space, available swap space,
and used swap space. This and Mem are just like the output of free(1).

PID The process ID of each task.

PPID The parent process ID of each task.

UID The user ID of the task’s owner.

USER The user name of the task’s owner.

PRI The priority of the task.

NI The nice value of the task. Negative nice values are higher priority.

SIZE The size of the task’s code plus data plus stack space, in kilobytes, is shown
here.

89

9.9. Environments of Processes 9. Processes, Environment Variables

TSIZE The code size of the task. This gives strange values for kernel processes and
is broken for ELF processes.

DSIZE Data + Stack size. This is broken for ELF processes.

TRS Text resident size.

SWAP Size of the swapped out part of the task.

D Size of pages marked dirty.

LIB Size of use library pages. This does not work for ELF processes.

RSS The total amount of physical memory used by the task, in kilobytes, is shown
here. For ELF processes used library pages are counted here, for a.out pro-
cesses not.

SHARE The amount of shared memory used by the task is shown in this column.

STAT The state of the task is shown here. The state is either S for sleeping, D for
uninterruptible sleep, R for running, Z for zombies, or T for stopped or traced.
These states are modified by a trailing < for a process with negative nice value,
N for a process with positive nice value, W for a swapped out process (this
does not work correctly for kernel processes).

WCHAN depending on the availability of either /boot/psdatabase or the kernel link
map /boot/System.map this shows the address or the name of the kernel
function the task currently is sleeping in.

TIME Total CPU time the task has used since it started. If cumulative mode is on,
this also includes the CPU time used by the process’s children which have
died. You can set cumulative mode with the S command line option or toggle
it with the interactive command S. The header line will then be changed to
CTIME.

%$CPU The task’s share of the CPU time since the last screen update, expressed as a
percentage of total CPU time per processor.

$MEM The task’s share of the physical memory.

COMMAND The task’s command name, which will be truncated if it is too long to be

displayed on one line. Tasks in memory will have a full command line, but
swapped-out tasks will only have the name of the program in parentheses (for

example, “(getty)”).

9.9 Environments of Processes

Each process that runs does so with the knowledge of several var=value text pairs. All
this means is that a process can look up the value of some variable that it may have
inherited from its parent process. The complete list of these text pairs is called the
environment of the process, and each var is called an environment variable. Each process
has its own environment, which is copied from the parent process’s environment.

After you have logged in and have a shell prompt, the process you are using
(the shell itself) is just like any other process with an environment with environment
variables. To get a complete list of these variables, just type:

90

9. Processes, Environment Variables 9.9. Environments of Processes

=)

This command is useful for finding the value of an environment variable whose name
you are unsure of:

Eset | grep <regexp>]

Try set | grep PATH to see the PATH environment variable discussed previously.

The purpose of an environment is just to have an alternative way of passing pa-
rameters to a program (in addition to command-line arguments). The difference is that
an environment is inherited from one process to the next: for example, a shell might
have a certain variable set and may run a file manager, which may run a word pro-
cessor. The word processor inherited its environment from file manager which inher-
ited its environment from the shell. If you had set an environment variable PRINTER
within the shell, it would have been inherited all the way to the word processor, thus
eliminating the need to separately configure which printer the word processor should
use.

Try

X="Hi there"
echo $X

You have set a variable. But now run

(basn |

You have now run a new process which is a child of the process you were just in. Type

[echo $X j

You will see that X is not set. The reason is that the variable was not exported as an
environment variable and hence was not inherited. Now type

ex)

which breaks to the parent process. Then

export X
bash
echo $X

You will see that the new bash now knows about X.

Above we are setting an arbitrary variable for our own use. bash (and many
other programs) automatically set many of their own environment variables. The bash

91

9.9. Environments of Processes 9. Processes, Environment Variables

man page lists these (when it talks about unsetting a variable, it means using the com-
mand unset <variable>). You may not understand some of these at the moment,
but they are included here as a complete reference for later.

The following is quoted verbatim from the bash man page. You will see that
some variables are of the type that provide special information and are read but never
never set, whereas other variables configure behavioral features of the shell (or other
programs) and can be set at any time?.

Shell Variables
The following variables are set by the shell:

PPID The process ID of the shell’s parent.
PWD The current working directory as set by the cd command.
OLDPWD The previous working directory as set by the cd command.

REPLY Set to the line of input read by the read builtin command when no argu-
ments are supplied.

UID Expands to the user ID of the current user, initialized at shell startup.

EUID Expands to the effective user ID of the current user, initialized at shell
startup.

BASH Expands to the full pathname used to invoke this instance of bash.
BASH_VERSION Expands to the version number of this instance of bash.
SHLVL Incremented by one each time an instance of bash is started.

RANDOM Each time this parameter is referenced, a random integer is generated.
The sequence of random numbers may be initialized by assigning a value to
RANDOM. If RANDOM is unset, it loses its special properties, even if it is
subsequently reset.

SECONDS Each time this parameter is referenced, the number of seconds since
shell invocation is returned. If a value is assigned to SECONDS. the value
returned upon subsequent references is the number of seconds since the as-
signment plus the value assigned. If SECONDS is unset, it loses its special
properties, even if it is subsequently reset.

LINENO Each time this parameter is referenced, the shell substitutes a decimal
number representing the current sequential line number (starting with 1)
within a script or function. When not in a script or function, the value substi-
tuted is not guaranteed to be meaningful. When in a function, the value is not
the number of the source line that the command appears on (that information
has been lost by the time the function is executed), but is an approximation of
the number of simple commands executed in the current function. If LINENO
is unset, it loses its special properties, even if it is subsequently reset.

HISTCMD The history number, or index in the history list, of the current com-
mand. If HISTCMD is unset, it loses its special properties, even if it is subse-
quently reset.

2Thanks to Brian Fox and Chet Ramey for this material.

92

9. Processes, Environment Variables 9.9. Environments of Processes

OPTARG The value of the last option argument processed by the getopts builtin
command (see SHELL BUILTIN COMMANDS below).

OPTIND The index of the next argument to be processed by the getopts builtin
command (see SHELL BUILTIN COMMANDS below).

HOSTTYPE Automatically set to a string that uniquely describes the type of ma-
chine on which bash is executing. The default is system-dependent.

OSTYPE Automatically set to a string that describes the operating system on
which bash is executing. The default is system-dependent.

The following variables are used by the shell. In some cases, bash assigns a default
value to a variable; these cases are noted below.

IFS The Internal Field Separator that is used for word splitting after expansion and
to split lines into words with the read builtin command. The default value is
“<space><tab><newline>".

PATH The search path for commands. It is a colon-separated list of di-
rectories in which the shell looks for commands (see COMMAND EX-
ECUTION below). The default path is system-dependent, and is
set by the administrator who installs bash. A common value is
“/usr/gnu/bin: /usr/local /bin: /usr/ucb:/bin: /usr/bin:.”.

HOME The home directory of the current user; the default argument for the cd
builtin command.

CDPATH The search path for the cd command. This is a colon-separated list of
directories in which the shell looks for destination directories specified by the
cd command. A sample valueis **.:7:/usr’’,

ENV If this parameter is set when bash is executing a shell script, its value is inter-
preted as a filename containing commands to initialize the shell, as in .bashrc.
The value of ENV is subjected to parameter expansion, command substitu-
tion, and arithmetic expansion before being interpreted as a pathname. PATH
is not used to search for the resultant pathname.

MAIL If this parameter is set to a filename and the MAILPATH variable is not set,
bash informs the user of the arrival of mail in the specified file.

MAILCHECK Specifies how often (in seconds) bash checks for mail. The defaultis
60 seconds. When it is time to check for mail, the shell does so before prompt-
ing. If this variable is unset, the shell disables mail checking.

MAILPATH A colon-separated list of pathnames to be checked for mail. The mes-
sage to be printed may be specified by separating the pathname from the mes-
sage with a ‘?’. $_ stands for the name of the current mailfile. Example:
MAILPATH=' /usr/spool/mail/bfox?"You have mail": /shell-mail?"$_ has maill!"’ Bash supplies a de-
fault value for this variable, but the location of the user mail files that it uses
is system dependent (e.g., /usr/spool/mail/$USER).

MAIL_WARNING If set, and a file that bash is checking for mail has been accessed
since the last time it was checked, the message “The mail in mailfile has been
read” is printed.

93

9.9. Environments of Processes 9. Processes, Environment Variables

PS1 The value of this parameter is expanded (see PROMPTING below) and used
as the primary prompt string. The default value is “bash”$ ”.

PS2 The value of this parameter is expanded and used as the secondary prompt
string. The defaultis “> ".

PS3 The value of this parameter is used as the prompt for the select command (see
SHELL GRAMMAR above).

PS4 The value of this parameter is expanded and the value is printed before each
command bash displays during an execution trace. The first character of PS4
is replicated multiple times, as necessary, to indicate multiple levels of indi-
rection. The default is “+ ”.

HISTSIZE The number of commands to remember in the command history (see
HISTORY below). The default value is 500.

HISTFILE The name of the file in which command history is saved. (See HISTORY
below.) The default value is 7.bash_history. If unset, the command history is
not saved when an interactive shell exits.

HISTFILESIZE The maximum number of lines contained in the history file. When
this variable is assigned a value, the history file is truncated, if necessary, to
contain no more than that number of lines. The default value is 500.

OPTERR If set to the value 1, bash displays error messages generated by
the getopts builtin command (see SHELL BUILTIN COMMANDS below).
OPTERR is initialized to 1 each time the shell is invoked or a shell script is
executed.

PROMPT_COMMAND If set, the value is executed as a command prior to issuing
each primary prompt.

IGNOREEOF Controls the action of the shell on receipt of an EOF character as the
sole input. If set, the value is the number of consecutive EOF characters typed
as the first characters on an input line before bash exits. If the variable exists
but does not have a numeric value, or has no value, the default value is 10.
If it does not exist, EOF signifies the end of input to the shell. This is only in
effect for interactive shells.

TMOUT If set to a value greater than zero, the value is interpreted as the number
of seconds to wait for input after issuing the primary prompt. Bash terminates
after waiting for that number of seconds if input does not arrive.

FCEDIT The default editor for the fc builtin command.

FIGNORE A colon-separated list of suffixes to ignore when performing filename
completion (see READLINE below). A filename whose suffix matches one of
the entries in FIGNORE is excluded from the list of matched filenames. A

7

sample value is “.0:™".

INPUTRC The filename for the readline startup file, overriding the default of
“/.inputrc (see READLINE below).

notify If set, bash reports terminated background jobs immediately, rather than
waiting until before printing the next primary prompt (see also the -b option
to the set builtin command).

94

9. Processes, Environment Variables 9.9. Environments of Processes

history_control

HISTCONTROL If set to a value of ignorespace, lines which begin with a space
character are not entered on the history list. If set to a value of ignoredups, lines
matching the last history line are not entered. A value of ignoreboth combines
the two options. If unset, or if set to any other value than those above, all lines
read by the parser are saved on the history list.

command _oriented_history If set, bash attempts to save all lines of a multiple-line
command in the same history entry. This allows easy re-editing of multi-line
commands.

’

glob_dot filenames If set, bash includes filenames beginning with a *.” in the re-

sults of pathname expansion.

allow_null_glob_expansion If set, bash allows pathname patterns which match no
files (see Pathname Expansion below) to expand to a null string, rather than
themselves.

histchars The two or three characters which control history expansion and tok-
enization (see HISTORY EXPANSION below). The first character is the his-
tory expansion character, that is, the character which signals the start of a history
expansion, normally ‘!. The second character is the quick substitution charac-
ter, which is used as shorthand for re-running the previous command entered,
substituting one string for another in the command. The default is *". The op-
tional third character is the character which signifies that the remainder of the
line is a comment, when found as the first character of a word, normally ‘#.
The history comment character causes history substitution to be skipped for
the remaining words on the line. It does not necessarily cause the shell parser
to treat the rest of the line as a comment.

nolinks If set, the shell does not follow symbolic links when executing commands
that change the current working directory. It uses the physical directory struc-
ture instead. By default, bash follows the logical chain of directories when
performing commands which change the current directory, such as c¢d. See
also the description of the -P option to the set builtin (SHELL BUILTIN COM-
MANDS below).

hostname_completion _file

HOSTFILE Contains the name of a file in the same format as /etc/hosts that should
be read when the shell needs to complete a hostname. The file may be changed
interactively; the next time hostname completion is attempted bash adds the
contents of the new file to the already existing database.

noclobber If set, bash does not overwrite an existing file with the >, >&, and <>
redirection operators. This variable may be overridden when creating output
files by using the redirection operator >— instead of > (see also the -C option
to the set builtin command).

auto_resume This variable controls how the shell interacts with the user and job
control. If this variable is set, single word simple commands without redi-
rections are treated as candidates for resumption of an existing stopped job.
There is no ambiguity allowed; if there is more than one job beginning with
the string typed, the job most recently accessed is selected. The name of a

95

9.9. Environments of Processes 9. Processes, Environment Variables

stopped job, in this context, is the command line used to start it. If set to the
value exact, the string supplied must match the name of a stopped job exactly;
if set to substring, the string supplied needs to match a substring of the name
of a stopped job. The substring value provides functionality analogous to the
%? job id (see JOB CONTROL below). If set to any other value, the supplied
string must be a prefix of a stopped job’s name; this provides functionality
analogous to the % job id.

no_exit_on_failed_exec If this variable exists, a non-interactive shell will not exit if
it cannot execute the file specified in the exec builtin command. An interactive
shell does not exit if exec fails.

cdable_vars If this is set, an argument to the cd builtin command that is not a di-
rectory is assumed to be the name of a variable whose value is the directory
to change to.

96

Chapter 10

Mail

Electronic Mail, or email, is the way most people first come into contact with the Inter-
net. Although you may have used email in a graphical environment, here we show you
how mail was first intended to be used on a multiuser system. To a large extent what
applies here is really what is going on in the background of any system that supports
mail.

A mail message is a block of text sent from one user to another, using some mail
command or mailer program. A mail message will usually also be accompanied by a
subject explaining what the mail is about. The idea of mail is that a message can be
sent to someone even though he may not be logged in at the time and the mail will
be stored for him until he is around to read it. An email address is probably familiar
to you, for example: bruce@kangeroo.co.au. This means that bruce has a user
account on a computer called kangeroo.co.au, which often means that he can log
in as bruce on that machine. The text after the @ is always the name of the machine.
Today’s Internet does not obey this exactly, but there is always a machine that bruce
does have an account on where mail is eventually sent. “That machine is also usually a UNIX

machine™

Sometimes email addresses are written in a more user-friendly form
like Bruce Wallaby <bruce@Rkangeroo.co.au> Or bruce@kangeroo.co.au
(Bruce Wallaby). In this case, the surrounding characters are purely cosmetic; only
bruce@kangeroo.co.au is ever used.

When mail is received for you (from another user on the system or from a user
from another system) it is appended to the file /var/spool/mail/<username>
called the mail file or mailbox file; <username> is your login name. You then run some
program that interprets your mail file, allowing you to browse the file as a sequence of
mail messages and read and reply to them.

An actual addition to your mail file might look like this:

97

10

15

20

25

30

35

10. Mail

From mands@inetafrica.com Mon Jun 1 21:20:21 1998

Return-Path: <mands@inetafrica.com>

Received: from pizza.cranzgot.co.za (root@pizza.cranzgot.co.za [192.168.2.254])
by onion.cranzgot.co.za (8.8.7/8.8.7) with ESMTP id VAA11942
for <psheer@icon.co.za>; Mon, 1 Jun 1998 21:20:20 +0200

Received: from mail450.icon.co.za (mail4d50.icon.co.za [196.26.208.3])
by pizza.cranzgot.co.za (8.8.5/8.8.5) with ESMTP id VAA19357
for <psheer@icon.co.za>; Mon, 1 Jun 1998 21:17:06 +0200

Received: from smtp02.inetafrica.com (smtp02.inetafrica.com [196.7.0.1401])
by maild450.icon.co.za (8.8.8/8.8.8) with SMTP id VAA02315
for <psheer@icon.co.za>; Mon, 1 Jun 1998 21:24:21 +0200 (GMT)

Received: from default [196.31.19.216] (fullmoon)
by smtpO2.inetafrica.com with smtp (Exim 1.73 #1)
id OygTDL-00041u-00; Mon, 1 Jun 1998 13:57:20 +0200

Message-ID: <357296DF.60A3Q@inetafrica.com>

Date: Mon, 01 Jun 1998 13:56:15 +0200

From: a person <mands@inetafrica.com>

Reply-To: mands@inetafrica.com

Organization: private

X-Mailer: Mozilla 3.01 (Win95; I)

MIME-Version: 1.0

To: paul sheer <psheer@icon.co.za>

Subject: hello

Content-Type: text/plain; charset=us-ascii

Content-Transfer-Encoding: 7bit

Status: RO

X-Status: A

hey paul

its me

how r u doing

i am well

what u been upot
hows life

hope your well
amanda

Each mail message begins with a From at the beginning of a line, followed by
a space. Then comes the mail header, explaining where the message was routed from
to get to your mailbox, who sent the message, where replies should go, the subject of
the mail, and various other mail header fields. Above, the header is longer than the mail
messages. Examine the header carefully.

The header ends with the first blank line. The message itself (or body) starts right
after. The next header in the file will once again start with a From. Froms on the
beginning of a line never exist within the body. If they do, the mailbox is considered to
be corrupt.

Some mail readers store their messages in a different format. However the above
format (called the mbox format) is the most common for UNIX. Of interest is a for-
mat called Maildir, which is one format that does not store mail messages in a single
contiguous file. Instead, Maildir stores each message as a separate file within a direc-
tory. The name of the directory is then considered to be the mailbox “file”; by default
Maildir uses a directory Maildir within the user’s home directory.

98

10. Mail 10.1. Sending and Reading Mail

10.1 Sending and Reading Mail

The simplest way to send mail is to use the mail command. Type mail -
s "hello there" <username>. Themail program will then wait for you to type
out your message. When you are finished, enter a . on its own on a single line. The
user name will be another user on your system. If no one else is on your system,
then send mail to root withmail -s "Hello there" rootormail -s "Hello
there" root@localhost (if the @ is not present, then the local machine, 1ocal-
host, is implied). Sending files over email is discussed in Section 12.6.

You can use mail to view your mailbox. This is a primitive utility in compari-
son with modern graphical mail readers but is probably the only mail reader that can
handle arbitrarily sized mailboxes. Sometimes you may get a mailbox that is over a
gigabyte in size, and mail is the only way to delete messages from it. To view your
mailbox, typemail, and then z to read your next window of messages, and z- to view
the previous window. Most commands work like command message_number, for exam-
ple, delete 14 or reply 7. The message number is the left column with an N next
to it (for a New message).

For the state of the art in terminal-based mail readers (also called mail clients), try
mutt and pine. \ypine’s license is not Free\

There are also some graphical mail readers in various stages of development. At
the time I am writing this, I have been using balsa for a few months, which was the
best mail reader I could find.

10.2 The SMTP Protocol — Sending Mail Raw to Port 25

To send mail, you need not use a mail client at all. The mail client just follows SMTP
(Simple Mail Transfer Protocol), which you can type in from the keyboard.

For example, you can send mail by telneting to port 25 of a machine that has an
MTA (Mail Transfer Agent—also called the mailer daemon or mail server) running. The
word daemon denotes programs that run silently without user intervention.

This is, in fact, how so-called anonymous mail or spam mail ~Spam is a term used to
indicate unsolicited email—that is, junk mail that is posted in bulk to large numbers of arbitrary email ad-
dresses. Sending spam is considered unethical Internet practice™\ is sent on the Internet. A mailer
daemon runs in most small institutions in the world and has the simple task of receiv-
ing mail requests and relaying them on to other mail servers. Try this, for example
(obviously substituting mail.cranzgot.co.za for the name of a mail server that
you normally use):

[root@cericon]# telnet mail.cranzgot.co.za 25
Trying 192.168.2.1...

99

20

10.2. The SMTP Protocol — Sending Mail Raw to Port 25 10. Mail

Connected to 192.168.2.1.

Escape character is ’""]’.

220 onion.cranzgot.co.za ESMTP Sendmail 8.9.3/8.9.3; Wed, 2 Feb 2000 14:54:47 +0200
HELO cericon.cranzgot.co.za

250 onion.cranzgot.co.za Hello cericon.ctn.cranzgot.co.za [192.168.3.9], pleased to meet yo
MAIL FROM:psheer@icon.co.za

250 psheer@icon.co.za... Sender ok

RCPT TO:mandsQ@inetafrica.com

250 mands@inetafrica.com... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

Subject: Jjust to say hi

hi there
heres a short message

250 ORA04620 Message accepted for delivery
QUIT

221 onion.cranzgot.co.za closing connection
Connection closed by foreign host.
[root@cericon]#

The above causes the message “hi there heres a short message” to be
delivered to mands@inetafrica. com (the ReCiPienT). Of course, I can enter any ad-
dress that I like as the sender, and it can be difficult to determine who sent the message.
In this example, the Subject: is the only header field, although I needn’t have sup-
plied a header at all.

Now, you may have tried this and gotten a rude error message. This might be be-
cause the MTA is configured not to relay mail except from specific trusted machines—
say, only those machines within that organization. In this way anonymous email is
prevented.

On the other hand, if you are connecting to the user’s very own mail server, it has
to necessarily receive the mail, regardless of who sent it. Hence, the above is a useful
way to supply a bogus FROM address and thereby send mail almost anonymously. By
“almost” I mean that the mail server would still have logged the machine from which
you connected and the time of connection—there is no perfect anonymity for properly
configured mail servers.

The above technique is often the only way to properly test a mail server, and
should be practiced for later.

100

Chapter 11

User Accounts and User
Ownerships

UNIX intrinsically supports multiple users. Each user has a personal home directory
/home/<username> in which the user’s files are stored, hidden from other users.

So far you may have been using the machine as the root user, who is the system
administrator and has complete access to every file on the system. The root is also
called the superuser. The home directory of the root user is /root. Note that there is
an ambiguity here: the root directory is the topmost directory, known as the / directory. The
root user’s home directory is /root and is called the home directory of root.

Other than the superuser, every other user has limited access to files and directo-
ries. Always use your machine as a normal user. Log in as root only to do system
administration. This practice will save you from the destructive power that the root
user has. In this chapter we show how to manually and automatically create new users.

Users are also divided into sets, called groups. A user can belong to several
groups and there can be as many groups on the system as you like. Each group is
defined by a list of users that are part of that set. In addition, each user may have a
group of the same name (as the user’s login name), to which only that user belongs.

11.1 File Ownerships

Each file on a system is owned by a particular user and also owned by a particular group.
When you run 1s -al, you can see the user that owns the file in the third column
and the group that owns the file in the fourth column (these will often be identical,
indicating that the file’s group is a group to which only the user belongs). To change the
ownership of the file, simply use the chown, change ownerships, command as follows.

101

10

15

11.2. The Password File /etc/passwd 11. User Accounts and Ownerships

[chown <user>[:<group>] <filename>]

11.2 The Password File /etc/passwd

The only place in the whole system where a user name is registered is in this file.
\¢Exceptions to this rule are several distributed authentication schemes and the Samba package, but you
needn’t worry about these for now™ Once a user is added to this file, that user is said to
exist on the system. If you thought that user accounts were stored in some unreachable
dark corner, then this should dispel that idea. This is also known as the password file to
administrators. View this file with less:

root:x:0:0:Paul Sheer:/root:/bin/bash
bin:x:1:1:bin:/bin:

daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/adm:
lp:x:4:7:1p:/var/spool/lpd:
sync:x:5:0:sync:/sbin:/bin/sync
shutdown:x:6:0:shutdown:/sbin:/sbin/shutdown
halt:x:7:0:halt:/sbin:/sbin/halt
mail:x:8:12:mail:/var/spool/mail:
news:x:9:13:news:/var/spool/news:
uucp:x:10:14:uucp:/var/spool/uucp:
gopher:x:13:30:gopher:/usr/lib/gopher-data:
ftp:x:14:50:FTP User:/home/ftp:
nobody:x:99:99:Nobody:/:
alias:x:501:501::/var/gqmail/alias:/bin/bash
paul:x:509:510:Paul Sheer:/home/paul:/bin/bash
jack:x:511:512:Jack Robbins:/home/jack:/bin/bash

silvia:x:511:512:Silvia Smith:/home/silvia:/bin/bash

Above is an extract of my own password file. Each user is stored on a separate
line. Many of these are not human login accounts but are used by other programs.

Each line contains seven fields separated by colons. The account for jack looks
like this:

jack The user’s login name. It should be composed of lowercase letters and numbers.
Other characters are allowed, but are not preferable. In particular, there should
never be two user names that differ only by their capitalization.

x The user’s encrypted password. An x in this field indicates that it is stored in a sep-
arate file, /etc/shadow. This shadow password file is a later addition to UNIX
systems. It contains additional information about the user.

102

11. User Accounts and Ownerships 11.3. Shadow Password File: /etc/shadow

511 The user’s user identification number, UID. \This is used by programs as a short alterna-
tive to the user’s login name. In fact, internally, the login name is never used, only the UIDN

512 The user’s group identification number, GID. ~Similarly applies to the GID. Groups will
be discussed later™\

Jack Robbins The user’s full name. “\ Few programs ever make use of this field

/home/jack The user’s home directory. The HOME environment variable will be set
to this when the user logs in.

/bin/bash The shell to start when the user logs in.

11.3 Shadow Password File: /etc/shadow

The problem with traditional passwd files is that they had to be world readable ~Ev-
eryone on the system can read the file™\ in order for programs to extract information, such as
the user’s full name, about the user. This means that everyone can see the encrypted
password in the second field. Anyone can copy any other user’s password field and
then try billions of different passwords to see if they match. If you have a hundred
users on the system, there are bound to be several that chose passwords that matched
some word in the dictionary. The so-called dictionary attack will simply try all 80,000
common English words until a match is found. If you think you are clever to add a
number in front of an easy-to-guess dictionary word, password cracking algorithms
know about these as well. “And about every other trick you can think of ™\, To solve this prob-
lem the shadow password file was invented. The shadow password file is used only
for authentication N Verifying that the user is the genuine owner of the account™\ and is not world
readable—there is no information in the shadow password file that a common pro-
gram will ever need—no regular user has permission to see the encrypted password
field. The fields are colon separated just like the passwd file.

Here is an example line from a /et c/shadow file:

[jack:Q, Jpl.or6u2e7:10795:0:99999:7:-1:-1:134537220]

jack The user’s login name.

Q, Jpl.or6u2e7 The user’s encrypted password known as the hash of the pass-
word. This is the user’s 8-character password with a one-way hash function ap-
plied to it. It is simply a mathematical algorithm applied to the password that
is known to produce a unique result for each password. To demonstrate: the
(rather poor) password Loghimin hashes to : 1Z1F.0VSRRucs: in the shadow
file. An almost identical password Loghimin gives a completely different hash

103

11.4. The groups Command and /etc/group 11. User Accounts and Ownerships

:CavHIpD1W. cmg:. Hence, trying to guess the password from the hash can only

be done by trying every possible password. Such a brute force attack is therefore
considered computationally expensive but not impossible. To check if an entered
password matches, just apply the identical mathematical algorithm to it: if it
matches, then the password is correct. This is how the login command works.
Sometimes you will see a * in place of a hashed password. This means that the
account has been disabled.

10795 Days since January 1, 1970, that the password was last changed.

0 Days before which password may not be changed. Usually zero. This field is not
often used.

99999 Days after which password must be changed. This is also rarely used, and will
be set to 99999 by default.

7 Days before password is to expire that user is warned of pending password expira-
tion.

-1 Days after password expires that account is considered inactive and disabled. -
1 is used to indicate infinity—that is, to mean we are effectively not using this
feature.

-1 Days since January 1, 1970, when account will be disabled.

134537220 Flag reserved for future use.

11.4 The groups Command and /etc/group

On a UNIX system you may want to give a number of users the same access rights. For
instance, you may have five users that should be allowed to access some privileged file
and another ten users that are allowed to run a certain program. You can group these
users into, for example, two groups previl and wproc and then make the relevant
file and directories owned by that group with, say,

chown root:previl /home/somefile
chown root:wproc /usr/lib/wproc

Permissions ~Explained later™\ dictate the kind of access, but for the meantime, the
file/directory must at least be owned by that group.

The /etc/group file is also colon separated. A line might look like this:

[wproc:x:524:jack,mary,henry,arthur,sue,lester,fred,sally j

104

11. User Accounts and Ownerships 11.5. Manually Creating a User Account

wproc The name of the group. There should really also be a user of this name as well.
x The group’s password. This field is usually set with an x and is not used.
524 The GID group ID. This must be unique in the group’s file.

jack,maryhenry,arthursue,lester,fred,sally The list of users that belong to the group.
This must be comma separated with no spaces.

You can obviously study the group file to find out which groups a user belongs
to, “\yThat is, not “which users does a group consist of?” which is easy to see at a glance™. but when
there are a lot of groups, it can be tedious to scan through the entire file. The groups
command prints out this information.

11.5 Manually Creating a User Account

The following steps are required to create a user account:

/etc/passwd entry To create an entry in this file, simply edit it and copy an existing
line. “ When editing configuration files, never write out a line from scratch if it has some kind of
special format. Always copy an existing entry that has proved itself to be correct, and then edit in the
appropriate changes. This will prevent you from making errors™\. Always add users from the
bottom and try to preserve the “pattern” of the file—that is, if you see numbers
increasing, make yours fit in; if you are adding a normal user, add it after the
existing lines of normal users. Each user must have a unique UID and should
usually have a unique GID. So if you are adding a line to the end of the file, make
your new UID and GID the same as the last line but incremented by 1.

/etc/shadow entry Create a new shadow password entry. At this stage you do not
know what the hash is, so just make it a *. You can set the password with the
passwd command later.

/etc/group entry Create a new group entry for the user’s group. Make sure the
number in the group entry matches that in the passwd file.

/etc/skel This directory contains a template home directory for the user. Copy
the entire directory and all its contents into /home directory, renaming it to the
name of the user. In the case of our jack example, you should have a directory
/home/ jack.

Home directory ownerships You need to now change the ownerships of the home di-
rectory to match the user. The command chown -R jack:jack /home/jack
will accomplish this change.

Setting the password Use passwd <username> to set the user’s password.

105

11.6. Automatically: useradd and groupadd 11. User Accounts and Ownerships

11.6 Automatically Creating a User Account: useradd
and groupadd

The above process is tedious. The commands that perform all these updates automat-
ically are useradd, userdel, and usermod. The man pages explain the use of these
commands in detail. Note that different flavors of UNIX have different commands to
do this. Some may even have graphical programs or web interfaces to assist in creating
users.

In addition, the commands groupadd, groupdel, and groupmod do the same
with respect to groups.

11.7 User Logins

It is possible to switch from one user to another, as well as view your login status and
the status of other users. Logging in also follows a silent procedure which is important
to understand.

11.7.1 The login command

A user most often gains access to the system through the 1ogin program. This pro-
gram looks up the UID and GID from the passwd and group file and authenticates
the user.

The following is quoted from the 1ogin man page, and explains this procedure
in detail:

login is used when signing onto a system. It can also be used to switch from one
user to another at any time (most modern shells have support for this feature built
into them, however).

If an argument is not given, login prompts for the username.

If the user is not root, and if /efc/nologin exists, the contents of this file are printed
to the screen, and the login is terminated. This is typically used to prevent logins
when the system is being taken down.

If special access restrictions are specified for the user in /etc/usertty, these must be
met, or the login attempt will be denied and a syslog “\System error log program—
syslog writes all system messages to the file /var/log/messages™\ message will be
generated. See the section on ”"Special Access Restrictions.”

If the user is root, then the login must be occuring on a tty listed in /etc/securetty.
N If this file is not present, then root logins will be allowed from anywhere. It is worth deleting
this file if your machine is protected by a firewall and you would like to easily login from

106

11. User Accounts and Ownerships 11.7. User Logins

another machine on your LAN. If /etc/securetty is present, then logins are only allowed
from the terminals it lists\. Failures will be logged with the syslog facility.

After these conditions have been checked, the password will be requested and
checked (if a password is required for this username). Ten attempts are allowed
before login dies, but after the first three, the response starts to get very slow. Login
failures are reported via the syslog facility. This facility is also used to report any
successful root logins.

If the file .hushlogin exists, then a “quiet” login is performed (this disables the check-
ing of mail and the printing of the last login time and message of the day). Other-
wise, if /fvar/log/lastlog exists, the last login time is printed (and the current login is
recorded).

Random administrative things, such as setting the UID and GID of the tty are per-
formed. The TERM environment variable is preserved, if it exists (other environ-
ment variables are preserved if the -p option is used). Then the HOME, PATH,
SHELL, TERM, MAIL, and LOGNAME environment variables are set. PATH de-
faults to /usr/local/bin:/bin:/usr/bin:. “Note that the . —the current directory—is
listed in the PATH. This is only the default PATH however™\ for normal users, and to
/sbin:/bin:/usr/sbin:/usr/bin for root. Last, if this is not a “quiet” login, the message of
the day is printed and the file with the user’s name in /usr/spool/mail will be checked,
and a message printed if it has non-zero length.

The user’s shell is then started. If no shell is specified for the user in /etc/passwd,
then /bin/sh is used. If there is no directory specified in /etc/passwd, then / is used
(the home directory is checked for the .hushlogin file described above).

11.7.2 The set user, su command

To temporarily become another user, you can use the su program:

[su jack]

This command prompts you for a password (unless you are the root user to begin
with). It does nothing more than change the current user to have the access rights of
jack. Most environment variables will remain the same. The HOME, LOGNAME, and
USER environment variables will be set to jack, but all other environment variables
will be inherited. su is, therefore, not the same as a normal login.

To get the equivalent of a login with su, run

Esu - Jjack j

This will cause all initialization scripts (that are normally run when the user logs in)
to be executed. “ What actually happens is that the subsequent shell is started with a — in front of the
zero’th argument. This makes the shell read the user’s personal profile. The login command also does
this™. Hence, after running su with the - option, you logged in as if with the login
command.

107

10

15

11.7. User Logins 11. User Accounts and Ownerships

11.7.3 The who, w, and users commands to see who is logged in

who and w print a list of users logged in to the system, as well as their CPU consump-
tion and other statistics. who —--help gives:

Usage: who [OPTION]... [FILE | ARGl ARG2]
-H, --heading print line of column headings
-i, -u, --idle add user idle time as HOURS:MINUTES, . or old
-m only hostname and user associated with stdin
-q, ——count all login names and number of users logged on
-s (ignored)
-T, —-w, ——mesg add user’s message status as +, - or ?
—--message same as -T
—--writable same as -T
—--help display this help and exit
—--version output version information and exit
If FILE is not specified, use /var/run/utmp. /var/log/wtmp as FILE is common.
If ARGl ARG2 given, -m presumed: ‘am i’ or ‘mom likes’ are usual.

A little more information can be gathered from the info pages for this command.
The idle time indicates how long since the user has last pressed a key. Most often, one
just types who -Hiw.

w is similar. An extract of the w man page says:

w displays information about the users currently on the machine, and their pro-
cesses. The header shows, in this order, the current time, how long the system has
been running, how many users are currently logged on, and the system load aver-
ages for the past 1, 5, and 15 minutes.

The following entries are displayed for each user: login name, the tty name, the
remote host, login time, idle time, JCPU, PCPU, and the command line of their
current process.

The JCPU time is the time used by all processes attached to the tty. It does not
include past background jobs, but does include currently running background jobs.

The PCPU time is the time used by the current process, named in the “what” field.

Finally, from a shell script the users command is useful for just seeing who is
logged in. You can use in a shell script, for example:

for user in ‘users' ; do
<etc>
done

108

11. User Accounts and Ownerships 11.7. User Logins

11.7.4 The id command and effective UID

id prints your real and effective UID and GID. A user normally has a UID and a GID
but may also have an effective UID and GID as well. The real UID and GID are what
a process will generally think you are logged in as. The effective UID and GID are the
actual access permissions that you have when trying to read, write, and execute files.

11.7.5 User limits

There is a file /etc/security/limits. conf that stipulates the limitations on CPU
usage, process consumption, and other resources on a per-user basis. The documenta-
tion for this config file is contained in

/usr/ [share/]doc/pam—<version>/txts/README,pam_limits.

109

11.7. User Logins 11. User Accounts and Ownerships

110

Chapter 12

Using Internet Services

This chapter summarizes remote access and the various methods of transferring files
and data over the Internet.

12.1 ssh,not telnet or rlogin

telnet is a program for talking to a UNIX network service. It is most often used to do
a remote login. Try

telnet <remote_machine>
telnet localhost

to log in to your remote machine. It needn’t matter if there is no physical network;
network services always work regardless because the machine always has an internal
link to itself.

rlogin is like a minimal version of telnet that allows login access only. You
can type

rlogin -1 <username> <remote_machine>
rlogin -1 jack localhost

if the system is configured to support remote logins.

These two services are the domain of old world UNIX; for security reasons, ssh
is now the preferable service for logging in remotely:

[ssh [-1 <username>] <remote_machine> j

111

10

12.2. rep and scp 12. Using Internet Services

Though rloginand telnet are very convenient, they should never be used across a
public network because your password can easily be read off the wire as you type it in.

12.2 rcp and scp

rcp stands for remote copy and scp is the secure version from the ssh package. These
two commands copy files from one machine to another using a similar notation to cp.

rcp [-r] [<remote_machine>:]<file> [<remote_machine>:]<file>
scp [-1 <username>] [-r] [<remote_machine>:]<file> [<remote_machine>:]<file>

Here is an example:

[psheer@cericon]# rep /var/spool/mail/psheer \
divinian.cranzgot.co.za:/home/psheer/mail/cericon

[psheer@cericon]l# scp /var/spool/mail/psheer \
divinian.cranzgot.co.za:/home/psheer/mail/cericon

The authenticity of host ’divinian.cranzgot.co.za’ can’t be established.

RSA key fingerprint is 43:14:36:5d:bf:4f:£3:ac:19:08:5d:4b:70:4a:7e:6a.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added ’divinian.cranzgot.co.za’ (RSA) to the list of known hosts.

psheer@divinian’s password:
psheer loo% |**‘k~k‘k****‘k**~k**************************| 4266 KB 01:18

The —r option copies recursively and copies can take place in either direction or
even between two nonlocal machines.

scp should always be used instead of rcp for security reasons. Notice also the warn-
ing given by scp for this first-time connection. See the ssh documentation for how to
make your first connection securely. All commands in the ssh package have this same
behavior.

12.3 rsh

rsh (remote shell) is a useful utility for executing a command on a remote machine.
Here are some examples:

[psheer@cericon]# rsh divinian.cranzgot.co.za hostname
divinian.cranzgot.co.za

[psheer@Qcericon]# rsh divinian,cranzgot.co.za \

tar —-czf - /home/psheer | dd of=/dev/£fd0 bs=1024

tar: Removing leading ‘/’ from member names

20+0 records in

20+0 records out

112

12. Using Internet Services 12.4. FIP

[psheer@cericon]# cat /var/spool/mail/psheer | rsh divinian.cranzgot.co.za \
sh -c 'cat >> /home/psheer/mail/cericon’

The first command prints the host name of the remote machine. The second com-
mand backs up my remote home directory to my local floppy disk. (More about dd and
/dev/£d0 come later.) The last command appends my local mailbox file to a remote
mailbox file. Notice how stdin, stdout, and stderr are properly redirected to the local
terminal. After reading Chapter 29 see rsh(8) or in. rshd(8) to configure this service.

Once again, for security reasons rsh should never be available across a public network.

124 FTP

FTP stands for File Transfer Protocol. If FTP is set up on your local machine, then other
machines can download files. Type

Eftp metalab.unc.edu]
or
[ncftp metalab.unc.edu]

ftp is the traditional command-line UNIX FTP client, ~\,“client” always indicates the
user program accessing some remote service™\ while ncftp is a more powerful client that will
not always be installed.

You will now be inside an FTP session. You will be asked for a login name and
a password. The site metalab.unc.edu is one that allows anonymous logins. This
means that you can type anonymous as your user name, and then anything you like
as a password. You will notice that the session will ask you for an email address as
your password. Any sequence of letters with an @ symbol will suffice, but you should
put your actual email address out of politeness.

The FTP session is like a reduced shell. You can type cd, 1s,and 1s -al to view
file lists. help brings up a list of commands, and you can also type help <command>
to get help on a specific command. You can download a file by using the get <file-
name> command, but before you do this, you must set the transfer type to binary. The
transfer type indicates whether or not newline characters will be translated to DOS for-
mat. Typing ascii turns on this feature, while binary turns it off. You may also want
to enter hash which will print a # for every 1024 bytes of download. This is useful for
watching the progress of a download. Go to a directory that has a README file in it and
enter

[get README]

113

12.5. finger 12. Using Internet Services

The file will be downloaded into your current directory.

You can also cd to the /incoming directory and upload files. Try

[put README j

to upload the file that you have just downloaded. Most FTP sites have an /incoming
directory that is flushed periodically.

FTP allows far more than just uploading of files, although the administrator has
the option to restrict access to any further features. You can create directories, change
ownerships, and do almost anything you can on a local file system.

If you have several machines on a trusted LAN (Local Area Network—that is, your
private office or home network), all should have FTP enabled to allow users to easily
copy files between machines. How to install and configure one of the many available
FTP servers will become obvious later in this book.

12.5 finger

finger is a service for remotely listing who is logged in on a remote system. Try
finger @<hostname> to see who is logged in on <hostname>. The finger service
will often be disabled on machines for security reasons.

12.6 Sending Files by Email

Mail is being used more and more for transferring files between machines. It is bad
practice to send mail messages over 64 kilobytes over the Internet because it tends to
excessively load mail servers. Any file larger than 64 kilobytes should be uploaded
by FTP onto some common FIP server. Most small images are smaller than this size,
hence sending a small JPEG A common Internet image file format. These are especially compressed
and are usually under 100 kilobytes for a typical screen-sized photograph.\. image is considered ac-
ceptable.

12.6.1 uuencode and uudecode

If you must send files by mail then you can do it by using uuencode. This utility
packs binary files into a format that mail servers can handle. If you send a mail mes-
sage containing arbitrary binary data, it will more than likely be corrupted on the way
because mail agents are only designed to handle a limited range of characters. uuen-
code represents a binary file with allowable characters, albeit taking up slightly more
space.

114

12. Using Internet Services 12.6. Sending Files by Email

Here is a neat trick to pack up a directory and send it to someone by mail.

tar —czf - <mydir> | uuencode <mydir>.tar.gz \
| mail -s "Here are some files" <user>@<machine>

To unpack a uuencoded file, use the uudecode command:

[uudecode <myfile>,uu]

12.6.2 MIME encapsulation

Most graphical mail readers have the ability to attach files to mail messages and read
these attachments. The way they do this is not with uuencode but in a special format
known as MIME encapsulation. MIME (Multipurpose Internet Mail Extensions) is a way
of representing multiple files inside a single mail message. The way binary data is
handled is similar to uuencode, but in a format known as base64.

Each MIME attachment to a mail message has a particular type, known as the
MIME type. MIME types merely classify the attached file as an image, an audio clip,
a formatted document, or some other type of data. The MIME type is a text tag with
the format <major>/<minor>. The major part is called the major MIME type and the
minor part is called the minor MIME type. Available major types match all the kinds
of files that you would expect to exist. They are usually one of application, audio,
image, message, text, or video. The application type means a file format spe-
cific to a particular utility. The minor MIME types run into the hundreds. A long list of
MIME types can be found in /etc/mime.types.

If needed, some useful command-line utilities in the same vein as uuencode can
create and extract MIME messages. These are mpack, munpack, and mmencode (or
mimencode).

115

12.6. Sending Files by Email 12. Using Internet Services

116

Chapter 13

LINUX Resources

Very often it is not even necessary to connect to the Internet to find the information you
need. Chapter 16 contains a description of most of the documentation on a LINUX{}
distribution.

It is, however, essential to get the most up-to-date information where security
and hardware driver support are concerned. It is also fun and worthwhile to interact
with LINUX£) users from around the globe. The rapid development of Free software
could mean that you may miss out on important new features that could streamline IT
services. Hence, reviewing web magazines, reading newsgroups, and subscribing to
mailing lists are essential parts of a system administrator’s role.

13.1 FTP Sites and the sunsite Mirror

The metalab.unc.edu FIP site (previously called sunsite.unc.edu) is one of the
traditional sites for free software. It is mirrored in almost every country that has a
significant IT infrastructure. If you point your web browser there, you will find a list
of mirrors. For faster access, do pick a mirror in your own country.

It is advisable to browse around this FIP site. In particular you should try to find
the locations of:

e The directory where all sources for official GNU%® packages are stored. This
would be a mirror of the Free Software Foundation’s FTP archives. These are
packages that were commissioned by the FSF and not merely released under the
GPL (GNU%? General Public License). The FSF will distribute them in source
form (.tar.gz) for inclusion into various distributions. They will, of course,
compile and work under any UNIX.

117

13.2. HTTP — Web Sites 13. LINUX Resources

e The generic Linux download directory. It contains innumerable UNIX packages
in source and binary form, categorized in a directory tree. For instance, mail
clients have their own directory with many mail packages inside. metalab is the
place where new developers can host any new software that they have produced.
There are instructions on the FTP site to upload software and to request it to be
placed into a directory.

e The kernel sources. This is a mirror of the kernel archives where Linus and other
maintainers upload new stable \Meaning that the software is well tested and free of serious
bugs™\ and beta “Meaning that the software is in its development stages™\ kernel versions
and kernel patches.

e The various distributions. RedHat, Debian(O, and possibly other popular distri-
butions may be present.

This list is by no means exhaustive. Depending on the willingness of the site
maintainer, there may be mirrors to far more sites from around the world.

The FTP site is how you will download free software. Often, maintainers will
host their software on a web site, but every popular package will almost always have
an FTP site where versions are persistently stored. An example is metalab.unc.edu
in the directory /pub/Linux/apps/editors/X/cooledit/ where the author’s
own Cooledit package is distributed.

13.2 HTTP — Web Sites

Most users should already be familiar with using a web browser. You should
also become familiar with the concept of a web search. Do I need to explain this?\
You search the web when you point your web browser to a popular search engine
like http://www.google.com/, http://www.google.com/linux, http://infoseek.go.com/, http://www.-
altavista.com/, or http://www.yahoo.com/ and search for particular key words. Searching is
a bit of a black art with the billions of web pages out there. Always consult the search
engine’s advanced search options to see how you can do more complex searches than
just plain word searches.

The web sites in the FAQ (Frequently Asked Questions) (see Appendix D) should
all be consulted to get an overview on some of the primary sites of interest to LINUX{}
users.

Especially important is that you keep up with the latest LINUX{} news. I find the
Linux Weekly News http://lwn.net/ an excellent source. Also, the famous (and infamous)
SlashDot http://slashdot.org/ web site gives daily updates about “stuff that matters” (and
therefore contains a lot about free software).

Fresh Meat http://freshmeat.net/ is a web site devoted to new software releases. You
will find new or updated packages announced every few hours or so.

118

13. LINUX Resources 13.3. SourceForge

Linux Planet http://www.linuxplanet.com/ seems to be a new (?) web site that I
just found while writing this. It looks like it contains lots of tutorial information on
LINUX{).

News Forge http://www.newsforge.net/ also contains daily information about soft-
ware issues.

Lycos http:/download.lycos.com/static/advanced_search.asp is an efficient FTP search
engine for locating packages. It is one of the few search engines that understand regu-
lar expressions.

Realistically, though, a new LINUX{} web site is created every week; almost any-
thing prepended or appended to “1inux” is probably a web site already.

13.3 SourceForge

A new phenomenon in the free software community is the SourceForge web site,
http://www.sourceforge.net/. Developers can use this service at no charge to host their
project’s web site, FTP archives, and mailing lists. SourceForge has mushroomed so
rapidly that it has come to host the better half of all free software projects.

13.4 Mailing Lists

A mailing list is a special address that, when posted to, automatically sends email
to a long list of other addresses. You usually subscribe to a mailing list by sending
some specially formatted email or by requesting a subscription from the mailing list
manager.

Once you have subscribed to a list, any email you post to the list will be sent to
every other subscriber, and every other subscriber’s posts to the list will be sent to you.

There are mostly three types of mailing lists: the majordomo type, the listserv type,
and the *-request type.

13.4.1 Majordomo and Listserv

To subscribe to the majordomo variety, send a mail message to ma jordomo@<machine>
with no subject and a one-line message:

[subscribe <mailing-list-name>]

119

13.5. Newsgroups 13. LINUX Resources

This command adds your name to the mailing list <mailing-list-—
name>@<machine>, to which messages are posted.

Do the same for listserv-type lists, by sending the same message to 1ist-—
serv@<machine>

For instance, if you are an administrator for any machine that is exposed to the
Internet, you should get on bugt rag. Send email to

Esubscribe bugtrag]

to listserv@netspace.org, and become one of the tens of thousands of users that
read and report security problems about LINUX).

To unsubscribe to a list is just as simple. Send an email message:

[unsubscribe <mailing-list-name>]

Never send subscribe or unsubscribe messages to the mailing list itself. Send
subscribe or unsubscribe messages only to to the address ma jordomo@<machine>
or listserv@<machine>.

13.4.2 *-request

You subscribe to these mailing lists by sending an empty email message to <mailing-
list-name>-request@<machine> with the word subscribe as the subject. The
same email with the word unsubscribe removes you from the list.

Once again, never send subscribe or unsubscribe messages to the mailing list
itself.

13.5 Newsgroups

A newsgroup is a notice board that everyone in the world can see. There are tens of
thousands of newsgroups and each group is unique in the world.

The client software you use to read a newsgroup is called a news reader (or news
client). rtin is a popular text mode reader, while netscape is graphical. pan is an
excellent graphical news reader that I use.

Newsgroups are named like Internet hosts. One you might be interested in is
comp.os.linux.announce. The comp is the broadest subject description for com-
puters; os stands for operating systems; and so on. Many other 1inux newsgroups are

devoted to various LINUX{) issues.

120

13. LINUX Resources 13.6. RFCs

Newsgroups servers are big hungry beasts. They form a tree-like structure on the
Internet. When you send mail to a newsgroup it takes about a day or so for the mail
you sent to propagate to every other server in the world. Likewise, you can see a list
of all the messages posted to each newsgroup by anyone anywhere.

What's the difference between a newsgroup and a mailing list? The advantage of
a newsgroup is that you don’t have to download the messages you are not interested
in. If you are on a mailing list, you get all the mail sent to the list. With a newsgroup
you can look at the message list and retrieve only the messages you are interested in.

Why not just put the mailing list on a web page? If you did, then everyone in the
world would have to go over international links to get to the web page. It would load
the server in proportion to the number of subscribers. This is exactly what SlashDot is.
However, your newsgroup server is local, so you retrieve mail over a faster link and
save Internet traffic.

13.6 RFCs

An indispensable source of information for serious administrators or developers is the
RFCs. RFC stands for Request For Comments. RFCs are Internet standards written by
authorities to define everything about Internet communication. Very often, documen-
tation will refer to RFCs. “yThere are also a few nonsense RFCs out there. For example there is an
RFC to communicate using pigeons, and one to facilitate an infinite number of monkeys trying to write the
complete works of Shakespeare. Keep a close eye on Slashdot http://slashdot.org/ to catch these™

ftp://metalab.unc.edu/pub/docs/rfc/ (and mirrors) has the complete RFCs archived for
download. There are about 2,500 of them. The index file rfc-index.txt is probably
where you should start. It has entries like:

2045 Multipurpose Internet Mail Extensions (MIME) Part One: Format of
Internet Message Bodies. N. Freed & N. Borenstein. November 1996.
(Format: TXT=72932 bytes) (Obsoletes RFC1521, RFC1522, RFC1590)
(Updated by RFC2184, RFC2231) (Status: DRAFT STANDARD)

2046 Multipurpose Internet Mail Extensions (MIME) Part Two: Media
Types. N, Freed & N, Borenstein., November 1996. (Format: TXT=105854
bytes) (Obsoletes RFC1521, RFC1522, RFC1590) (Status: DRAFT STANDARD)

and

2068 Hypertext Transfer Protocol -- HTTP/1.1. R. Fielding, J. Gettys,
J. Mogul, H. Frystyk, T. Berners-Lee., January 1997. (Format:
TXT=378114 bytes) (Status: PROPOSED STANDARD)

Well, you get the idea.

121

13.6. RFCs 13. LINUX Resources

122

Chapter 14

Permission and Modification
Times

Every file and directory on a UNIX system, besides being owned by a user and a group,
has access flags “\ A switch that can either be on or off™\ (also called access bits) dictating what
kind of access that user and group have to the file.

Running 1s -ald /bin/cp /etc/passwd /tmp gives you a listing like this:

—FWXr—Xr—x 1 root root 28628 Mar 24 1999 /bin/cp
—IrwW-r——r—-— 1 root root 1151 Jul 23 22:42 /etc/passwd
drwxrwxrwt 5 root root 4096 Sep 25 15:23 /tmp

In the leftmost column are flags which completely describe the access rights to
the file.

So far I have explained that the furthest flag to the left is either - or d, indicating
an ordinary file or directory. The remaining nine have a - to indicate an unset value
or one of several possible characters. Table 14.1 gives a complete description of file
system permissions.

14.1 The chmod Command

You use the chmod command to change the permissions of a file. It's usually used as
follows:

[chmod [-R] [ulglolal[+]-][rlw|x]|s|t] <file> [<file>]

)

123

14.1. The chmod Command

14. Permission and Modification Times

Table 14.1 File and directory permissions

tents of the files in a directory
for x and t. t, known as the
sticky bit, prevents users from
removing files that they do not
own, hence users are free to ap-
pend to the directory but not to
remove other users’ files. T has
no effect.

Possible Effect for directories Effect for files

chars, -

for unset

r User can read the contents of the | User can read the file.
directory.

User, u w With x or s, user can create and | User can write to the file.

remove files in the directory.

X s S User can access the contents of | User can execute the file for x
the files in a directory for x or s. | or s. s, known as the setuid bit,
S has no effect. means to set the user owner of

the subsequent process to that of
the file. S has no effect.

r Group can read the contents of | Group can read the file.

the directory.
Group, g | w With x or s, group can create | Group can write to the file.

and remove files in the directory.

xs S Group can access the contents of | Group can execute the file for x
the files in a directory for x. For | or s. s, known as the setgid bit,
s, force all files in this directory | means to set the group owner of
to the same group as the direc- | the subsequent process to that of
tory. S has no effect. the file. S has no effect.

r Everyone can read the contents | Everyone can read the file.
of the directory.

Other,o | w With x or t, everyone can create | Everyone can write to the file.

and remove files in the directory.

xtT Everyone can access the con- | Group can execute the file for x

or t. For t, save the process
text image to the swap device so
that future loads will be faster (I
don’t know if this has an effect
on LINUX,Q). T has no effect.

For example,

[chmod ut+x myfile

adds execute permissions for the user of myfile. And,

[chmod a-rx myfile

124

14. Permission and Modification Times 14.2. The umask Command

removes read and execute permissions for all—that is, user, group, and other.
The -R option, once again means recursive, diving into subdirectories as usual.

Permission bits are often represented in their binary form, especially in programs.
It is convenient to show the rwxrwxrwx set in octal, “\ See Section 2.1\ where each digit
fits conveniently into three bits. Files on the system are usually created with mode
0644, meaning rw—r—-r--. You can set permissions explicitly with an octal number,
for example,

[chmod 0755 myfile j

gives myfile the permissions rwxr-xr-x. For a full list of octal values for all kinds
of permissions and file types, see /usr/include/linux/stat.h.

In Table 14.1 you can see s, the setuid or setgid bit. If it is used without execute
permissions then it has no meaning and is written as a capitalized S. This bit effectively
colorizes an x into an s, so you should read an s as execute with the setuid or setgid
bit set. t is known as the sticky bit. It also has no meaning if there are no execute
permissions and is written as a capital T.

The leading 0 can in be ignored, but is preferred for explicitness. It can take on a
value representing the three bits, setuid (4), setgid (2), and sticky (1). Hence a value of
5764 is 101 111 110 100 in binary and gives ~rwsrw-r-T.

14.2 The umask Command

umask sets the default permissions for newly created files; it is usually 022. This de-
fault value means that the permissions of any new file you create (say, with the touch
command) will be masked with this number. 022 hence excludes write permissions of
group and of other. A umask of 006 would exclude read and write permissions of
other, but would allow read and write of group. Try

umask

touch <filel>
ls —al <filel>
umask 026
touch <file2>
ls —al <file2>

026 is probably closer to the kind of mask we like as an ordinary user. Check your
/etc/profile file to see what umask your login defaults to, when, and also why.

125

14.3. Modification Times: stat 14. Permission and Modification Times

14.3 Modification Times: stat

In addition to permissions, each file has three integers associated with it that represent,
in seconds, the last time the file was accessed (read), when it was last modified (written
to), and when its permissions were last changed. These are known as the atime, mtime,
and ctime of a file respectively.

To get a complete listing of the file’s permissions, use the stat command. Here
is the result of stat /etc:

File: "/etc"

Size: 4096 Filetype: Directory
Mode: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)
Device: 3,1 Inode: 14057 Links: 41

Access: Sat Sep 25 04:09:08 1999(00000.15:02:23)
Modify: Fri Sep 24 20:55:14 1999(00000.22:16:17)
Change: Fri Sep 24 20:55:14 1999(00000.22:16:17)

The Size: quoted here is the actual amount of disk space used to store the directory
listing, and is the same as reported by 1s. In this case it is probably four disk blocks
of 1024 bytes each. The size of a directory as quoted here does not mean the sum of all
files contained under it. For a file, however, the Size: would be the exact file length
in bytes (again, as reported by 1s).

126

10

Chapter 15

Symbolic and Hard Links

Very often, a file is required to be in two different directories at the same time. Think
for example of a configuration file that is required by two different software packages
that are looking for the file in different directories. The file could simply be copied,
but to have to replicate changes in more than one place would create an administrative
nightmare. Also consider a document that must be present in many directories, but
which would be easier to update at one point. The way two (or more) files can have the
same data is with links.

15.1 Soft Links

To demonstrate a soft link, try the following:

touch myfile
In -s myfile myfile2
1s —al

cat > myfile
a

few

lines

of

text

°D

cat myfile
cat myfile2

127

15.1. Soft Links 15. Symbolic and Hard Links

Notice that the 1s -al listing has the letter 1 on the far left next to myfile2,
and the usual - next to myfile. This indicates that the file is a soft link (also known as
a symbolic link or symlink) to some other file.

A symbolic link contains no data of its own, only a reference to another file. It can
even contain a reference to a directory. In either case, programs operating on the link
will actually see the file or directory it points to.

Try

mkdir mydir

In -s mydir mydir2
1s —al

touch ./mydir/filel
touch ./mydir2/file2
1s -al ./mydir

l1s -al ./mydir2

The directory mydir2 is a symbolic link tomydir2 and appears as though it is a replica
of the original. Once again the directory mydir2 does not consume additional disk
space—a program that reads from the link is unaware that it is seeing into a different
directory.

Symbolic links can also be copied and retain their value:

cp mydir2 /
ls -al /
cd /mydir2

You have now copied the link to the root directory. However, the link points to a
relative path mydir in the same directory as the link. Since there is no mydir here, an
error is raised.

Try

rm —f mydir2 /mydir2
1In -s ‘pwd‘/mydir mydir2
1s —al

Now you will see mydir2 has an absolute path. You can try

cp mydir2 /
ls -al /
cd /mydir2

and notice that it now works.

One of the common uses of symbolic links is to make mounted (see Section 19.4)
file systems accessible from a different directory. For instance, you may have a large

128

15. Symbolic and Hard Links 15.2. Hard Links

directory that has to be split over several physical disks. For clarity, you can mount the
disks as /diskl, /disk2, etc., and then link the various subdirectories in a way that
makes efficient use of the space you have.

Another example is the linking of /dev/cdrom to, say, /dev/hdc so that pro-
grams accessing the device file /dev/cdrom (see Chapter 18) actually access the cor-
rect IDE drive.

15.2 Hard Links

UNIX allows the data of a file to have more than one name in separate places in the
same file system. Such a file with more than one name for the same data is called a
hard-linked file and is similar to a symbolic link. Try

touch mydata
In mydata mydataB
ls —-al

The files mydata and mydataB are indistinguishable. They share the same data, and
have a 2 in second column of the 1s -al listing. This means that they are hard-linked
twice (that there are two names for this file).

The reason why hard links are sometimes used in preference to symbolic links is
that some programs are not fooled by a symbolic link: If you have, say, a script that
uses cp to copy a file, it will copy the symbolic link instead of the file it points to. ~cp
actually has an option to override this behavior™\ A hard link, however, will always be seen as
a real file.

On the other hand, hard links cannot be made between files on different file sys-
tems nor can they be made between directories.

129

15.2. Hard Links 15. Symbolic and Hard Links

130

Chapter 16

Pre-installed Documentation

This chapter tells you where to find documentation on a common LINUX£) distribu-
tion. The paths are derived from a RedHat distribution, but are no less applicable to
other distributions, although the exact locations might be different. One difference
between distributions is the migration of documentation source from /usr/???? to
/usr/share/????—the proper place for them—on account of their being shareable
between different machines. See Chapter 35 for the reason documentation goes where
it does. In many cases, documentation may not be installed or may be in completely
different locations. Unfortunately, I cannot keep track of what the 20 major vendors
are doing, so it is likely that this chapter will quickly become out of date.

For many proprietary operating systems, the definitive reference for their oper-
ating system is printed texts. For LINUX{}, much of documentation is written by the
authors themselves and is included with the source code. A typical LINUX{) distribu-
tion will package documentation along with the compiled binaries. Common distribu-
tions come with hundreds of megabytes of printable, hyperlinked, and plain text docu-
mentation. There is often no need to go the the World Wide Web unless something is
outdated.

If you have not already tried this, run

1s -1d /usr/*/doc /usr/*/*/doc /usr/share/*/*/doc \
/opt/*/doc /opt/*/*/doc

This is a somewhat unreliable way to search for potential documentation directories,
but it gives at least the following list of directories for an official RedHat 7.0 with a
complete set of installed packages:

/usr/X11R6/doc /usr/share/vim/vim57/doc
/usr/1lib/X11/doc /usr/share/doc
/usr/local/doc /usr/share/gphoto/doc

131

16. Pre-installed Documentation

L/usr/share/texmf/doc /usr/share/lout/doc J

e Kernel documentation: /usr/src/linux/Documentation/

This directory contains information on all hardware drivers except graphic cards. The
kernel has built-in drivers for networking cards, SCSI controllers, sound cards, and so
on. If you need to find out if one of these is supported, this is the first place to look.

o X Window System graphics hardware support: /usr/X11R6/1ib/X11/doc/

(This is the same as /usr/X11R6/doc/.) In this directory you will find documenta-
tion on all of the graphics hardware supported by X, how to configure X, tweak video
modes, cope with incompatible graphics cards, and so on. See Section 43.5 for details.

o TeX and Meta-Font reference: /usr/share/texmf/doc/

This directory has an enormous and comprehensive reference to the TgX typesetting
language and the Meta-Font font generation package. It is not, however, an exhaustive
reference.

o UTEX HTML documentation: /usr/share/texmf/doc/latex/latex2e-html/

This directory contains a large reference to the ETgX typesetting language. (This book
itself was typeset using ETgX.)

e HOWTOs: /usr/doc/HOWTO or /usr/share/doc/HOWTO

HOWTOs are an excellent source of layman tutorials for setting up almost any kind
of service you can imagine. RedHat seems to no longer ship this documentation with
their base set of packages. It is worth listing the contents here to emphasize diversity
of topics covered. These are mirrored all over the Internet, so you should have no
problem finding them from a search engine (in particular, from http://www.linuxdoc.org/):

3Dfx-HOWTO Finnish-HOWTO Modem—-HOWTO Security-HOWTO
AX25-HOWTO Firewall-HOWTO Multi-Disk—-HOWTO Serial-HOWTO
Access—HOWTO French-HOWTO Multicast-HOWTO Serial-Programming-HOWTO
Alpha-HOWTO Ftape-HOWTO NET-3-HOWTO Shadow-Password-HOWTO
Assembly-HOWTO GCC-HOWTO NFS-HOWTO Slovenian-HOWTO
Bash-Prompt-HOWTO German-HOWTO NIS-HOWTO Software-Release-Practice-HOWTO
Benchmarking-HOWTO Glibc2-HOWTO Networking-Overview-HOWTO Sound-HOWTO
Beowulf-HOWTO HAM-HOWTO Optical-Disk—-HOWTO Sound-Playing-HOWTO
BootPrompt-HOWTO Hardware-HOWTO Oracle-HOWTO Spanish-HOWTO
Bootdisk—-HOWTO Hebrew-HOWTO PCI-HOWTO TeTeX-HOWTO
Busmouse—-HOWTO INDEX.html PCMCIA-HOWTO Text-Terminal-HOWTO

132

16. Pre-installed Documentation

CD-Writing-HOWTO
CDROM-HOWTO
COPYRIGHT
Chinese-HOWTO
Commercial-HOWTO
Config-HOWTO
Consultants-HOWTO
Cyrillic-HOWTO
DNS-HOWTO

DOS-Win-to-Linux-HOWTO

DOS-to-Linux—-HOWTO
DOSEMU-HOWTO
Danish-HOWTO
Distribution-HOWTO
ELF-HOWTO
Emacspeak-HOWTO
Esperanto-HOWTO
Ethernet-HOWTO

INFO-SHEET

IPCHAINS-HOWTO

IPX-HOWTO

IR-HOWTO

ISP-Hookup-HOWTO
Installation-HOWTO
Intranet-Server—HOWTO
Italian-HOWTO
Java-CGI-HOWTO
Kernel-HOWTO
Keyboard-and-Console-HOWTO
KickStart-HOWTO
LinuxDoc+Emacs+Ispell-HOWTO
META-FAQ

MGR-HOWTO

MILO-HOWTO

MIPS-HOWTO

Mail-HOWTO

PPP-HOWTO
PalmOS-HOWTO
Parallel-Processing-HOWTO
Pilot-HOWTO
Plug-and-Play-HOWTO
Polish-HOWTO
Portuguese-HOWTO
PostgreSQL-HOWTO
Printing-HOWTO
Printing-Usage-HOWTO
Quake-HOWTO

README

REM-HOWTO
Reading-List-HOWTO
Root~RAID-HOWTO
5CSI-Programming—HOWTO
SMB-HOWTO

SRM-HOWTO

Thai-HOWTO

Tips-HOWTO

UMSDOS—-HOWTO

UPS-HOWTO

UUCP-HOWTO
Unix-Internet-Fundamentals—HOWTO
User-Group-HOWTO

VAR-HOWTO

VME-HOWTO
VMS-to-Linux-HOWTO
Virtual-Services-HOWTO
WWW-HOWTO

WWW-mSQL-HOWTO
XFree86-HOWTO
XFree86-Video-Timings—HOWTO
XWindow-User—HOWTO

o Mini HOWTOs: /usr/doc/HOWTO/mini or /usr/share/doc/HOWTO/mini

These are smaller quick-start tutorials in the same vein (also available from
http://www.linuxdoc.org/):

3-Button-Mouse DHCPcd Leased-Line PLIP Software—-RAID
ADSL DPT-Hardware-RAID Linux+DOS+Win95+0S2 Partition Soundblaster-AWE
ADSM-Backup Diald Linux+FreeBSD Partition-Rescue StarOffice
AI-Alife Diskless Linux+FreeBSD-mini-HOWTO Path Term-Firewall
Advocacy Ext2fs-Undeletion Linux+NT-Loader Pre-Installation-Checklist TkRat
Alsa-sound Fax-Server Linux+Win95 Process-Accounting Token-Ring
Apache+SSL+PHP+fp Firewall-Piercing Loadlin+Win95 Proxy—-ARP-Subnet Ultra-DMA
Automount. GIS-GRASS Loopback-Root-FS Public-Web-Browser Update
Backup-With-MSDOS GTEK-BBS-550 Mac-Terminal Omail+MH Upgrade
Battery-Powered Hard-Disk-Upgrade Mail-Queue Quota VAIO+Linux

Boca INDEX Mail2News RCS VPN

BogoMips INDEX.html Man-Page README Vesafb

Bridge I0-Port-Programming Modules RPM+Slackware Visual-Bell
Bridge+Firewall IP-Alias Multiboot-with-LILO RedHat-CD Windows-Modem-Sharing
Bzip2 IP-Masquerade NCD-X-Terminal Remote-Boot WordPerfect
Cable-Modem IP-Subnetworking NFS-Root Remote-X-Apps X-Big-Cursor
Cipe+Masq ISP-Connectivity NFS-Root-Client SLIP-PPP-Emulator XFree86-XInside
Clock Install-From-ZIP Netrom-Node Secure-POP+SSH Xterm-Title
Coffee Kerneld Netscape+Proxy Sendmail+UUCP ZIP-Drive
Colour-ls LBX Netstation Sendmail-Address-Rewrite zIP-Install
Cyrus-IMAP LILO News-Leafsite Small-Memory

DHCP Large-Disk Offline-Mailing Software-Building

e LINUX documentation project: /usr/doc/LDP or /usr/share/doc/1dp

The LDP project’s home page is http://www.linuxdoc.org/. The LDP is a consolidation of
HOWTOs, FAQs, several books, man pages, and more. The web site will have anything
that is not already installed on your system.

o Web documentation: /home/httpd/html or /var/www/html

Some packages may install documentation here so that it goes online automati-
cally if your web server is running. (In older distributions, this directory was
/home/httpd/html.)

133

16. Pre-installed Documentation

o Apache reference: /home/httpd/html/manual or /var/www/html/manual

Apache keeps this reference material online, so that it is the default web page shown
when you install Apache for the first time. Apache is the most popular web server.

e Manual pages: /usr/man/ or /usr/share/man/

Manual pages were discussed in Section 4.7. Other directory superstructures (see page
137) may contain man pages—on some other UNIX systems man pages are littered ev-
erywhere.

To convert a man page to PostScript (for printing or viewing), use, for example
(for the cp command),

groff -Tps -mandoc /usr/man/manl/cp.l > cp.ps ; gv cp.ps
groff -Tps -mandoc /usr/share/man/manl/cp.l > cp.ps ; gv cp.ps

e infopages: /usr/info/ or /usr/share/info/

Info pages were discussed in Section 4.8.

o Individual package documentation: /usr/doc/* or /usr/share/doc/*

Finally, all packages installed on the system have their own individual documenta-
tion directory. A package foo will most probably have a documentation directory
/usr/doc/foo (or /usr/share/doc/foo). This directory most often contains doc-
umentation released with the sources of the package, such as release information, fea-
ture news, example code, or FAQs. If you have a particular interest in a package, you
should always scan its directory in /usr/doc (or /usr/share/doc) or, better still,
download its source distribution.

Below are the /usr/doc (or /usr/share/doc) directories that contained more
than a trivial amount of documentation for that package. In some cases, the package
had complete references. (For example, the complete Python references were contained
nowhere else.)

ImageMagick-5.2.2 goc-c++-2.96 libtool-1.3.5 pmake-2.1.34
LPRng-3.6.24 ghostscript-5.50 libxml-1.8.9 pygtk-0.6.6
XFree86-doc-4.0.1 gimp-1.1.25 lilo-21.4.4 python-docs-1.5.2
bash-2.04 glibc-2.1.92 1sof-4.47 rxvt-2.6.3
bind-8.2.2.P5 gtk+-1.2.8 lynx-2.8.4 sane-1.0.3
cdrecord-1.9 gtk+-devel-1,2.8 ncurses-devel-5.1 sgml-tools-1.0.9
cvs-1.10.8 ipchains-1.3.9 nfs—utils-0.1.9.1 slang-devel-1.4,1
fetchmail-5.5.0 iproute-2.2.4 openjade-1.3 stylesheets-1.54.13rh
freetype-1.3.1 isdndk-utils-3.1 openssl-0.9.5a tin-1.4.4

gawk-3.0.6 krb5-devel-1.2.1 pam-0.72 uucp-1.06.1

gcc-2.96 libtiff-devel-3.5.5 pine-4.21 vim-common-5.7

134

Chapter 17

Overview of the UNIX Directory
Layout

Here is an overview of how UNIX directories are structured. This is a simplistic and
theoretical overview and not a specification of the LINUX/} file system. Chapter 35
contains proper details of permitted directories and the kinds of files allowed within
them.

17.1 Packages

LINUX{) systems are divided into hundreds of small packages, each performing some
logical group of operations. On LINUX{}, many small, self-contained packages inter-
operate to give greater functionality than would large, aggregated pieces of software.
There is also no clear distinction between what is part of the operating system and
what is an application—every function is just a package.

A software package on a RedHat type system is distributed in a single RedHat
Package Manager (RPM) file that has a . rpm extension. On a Debian distribution, the
equivalent is a . deb package file, and on the Slackware distribution there are Slackware
.tgz files.

Each package will unpack as many files, which are placed all over the system.
Packages generally do not create major directories but unpack files into existing, well-
known, major directories.

Note that on a newly installed system there are no files anywhere that do not
belong to some package.

135

10

10

10

17.2. UNIX Directory Superstructure

17. Overview of the UNIX Directory Layout

17.2 UNIX Directory Superstructure

The root directory on a UNIX system typically looks like this:

drwxr-xr-x 2 root root 2048 Aug 25 14:04 bin
drwxr-xr-x 2 root root 1024 Sep 16 10:36 boot
drwxr—-xr-x 7 root root 35840 Aug 26 17:08 dev
drwxr-xr-x 41 root root 4096 Sep 24 20:55 etc
drwxr-xr-x 24 root root 1024 Sep 27 11:01 home
drwxr—-xr-x 4 root root 3072 May 19 10:05 1ib
drwxr-xr—-x 2 root root 12288 Dec 15 1998 lost+found
drwxr—-xr-x 7 root root 1024 Jun 7 11:47 mnt
dr-xr-xr-x 80 root root 0 Sep 16 10:36 proc
drwxr-xr-x 3 root root 3072 Sep 23 23:41 sbin
drwxrwxrwt 5 root root 4096 Sep 28 18:12 tmp
drwxr-xr-x 25 root root 1024 May 29 10:23 usr
The /usr directory typically looks like this:
drwxr—-xr-x 9 root root 1024 May 15 11:49 X11R6
drwxr—-xr-x 6 root root 27648 Sep 28 17:18 bin
drwxr—-xr-x 2 root root 1024 May 13 16:46 dict
drwxr-xr-x 261 root root 7168 Sep 26 10:55 doc
drwxr—-xr-x 7 root root 1024 Sep 3 08:07 etc
drwxr—-xr-x 2 root root 2048 May 15 10:02 games
drwxr—-xr-x 4 root root 1024 Mar 21 1999 i386-redhat-linux
drwxr-xr-x 36 root root 7168 Sep 12 17:06 include
drwxr—-xr-x 2 root root 9216 Sep 7 09:05 info
drwxr-xr-x 79 root root 12288 Sep 28 17:17 1lib
drwxr—-xr-x 3 root root 1024 May 13 16:21 libexec
drwxr-xr-x 15 root root 1024 May 13 16:35 man
drwxr-xr-x 2 root root 4096 May 15 10:02 sbin
drwxr-xr-x 39 root root 1024 Sep 12 17:07 share
drwxr—-xr-x 3 root root 1024 Sep 4 14:38 src
drwxr-xr-x 3 root root 1024 Dec 16 1998 var
The /usr/local directory typically looks like this:
drwxr-xr-x 3 root root 4096 Sep 27 13:16 bin
drwxr-xr-x 2 root root 1024 Feb 6 1996 doc
drwxr—-xr-x 4 root root 1024 Sep 3 08:07 etc
drwxr-xr-x 2 root root 1024 Feb 6 1996 games
drwxr-xr-x 5 root root 1024 Aug 21 19:36 include
drwxr—-xr-x 2 root root 1024 Sep 7 09:08 info
drwxr—-xr-x 9 root root 2048 Aug 21 19:44 1ib
drwxr-xr-x 12 root root 1024 Aug 2 1998 man
drwxr-xr—-x 2 root root 1024 Feb 6 1996 sbin
drwxr-xr-x 15 root root 1024 Sep 7 09:08 share

136

17. Overview of the UNIX Directory Layout 17.2. UNIX Directory Superstructure

and the /usr/x11R6 directory also looks similar. What is apparent here is that
all these directories contain a similar set of subdirectories. This set of subdirectories
is called a directory superstructure or superstructure. ~yTo my knowledge this is a new term not
previously used by UNIX administrators.\

The superstructure always contains a bin and 1ib subdirectory, but almost all
others are optional.

Each package will install under one of these superstructures, meaning that it will
unpack many files into various subdirectories of the superstructure. A RedHat pack-
age would always install under the /usr or / superstructure, unless it is a graphical
X Window System application, which installs under the /usr/X11R6/ superstruc-
ture. Some very large applications may install under a /opt /<package-name> su-
perstructure, and homemade packages usually install under the /usr/local/ su-
perstructure (1ocal means specific to this very machine). The directory superstructure
under which a package installs is often called the installation prefix. Packages almost
never install files across different superstructures. ~yExceptions to this are configuration files which
are mostly stored in /etc/™\

Typically, most of the system is under /usr. This directory can be read-only,
since packages should never need to write to this directory—any writing is done un-
der /var or /tmp (/usr/var and /usr/tmp are often just symlinked to /var or
/tmp, respectively). The small amount under / that is not part of another superstruc-
ture (usually about 40 megabytes) performs essential system administration functions.
These are commands needed to bring up or repair the system in the absence of /usr.

The list of superstructure subdirectories and their descriptions is as follows:
bin Binary executables. Usually all bin directories are in the PATH environment vari-
able so that the shell will search all these directories for binaries.

sbin Superuser binary executables. These are programs for system administration only.
Only the root will have these executables in their PATH.

lib Libraries. All other data needed by programs goes in here. Most packages have
their own subdirectory under 1ib to store data files into. Dynamically Linked
Libraries (DLLs or . so files.) “Executable program code shared by more than one program
in the bin directory to save disk space and memory™\ are stored directly in 1ib.

ete Et cetera. Configuration files.

var Variable data. Data files that are continually being re-created or updated.
doc Documentation. This directory is discussed in Chapter 16.

man Manual pages. This directory is discussed in Chapter 16.

info Info pages. This directory is discussed in Chapter 16.

137

17.3. LINUX on a Single Floppy Disk 17. Overview of the UNIX Directory Layout

share Shared data. Architecture-independent files. Files that are independent of the
hardware platform go here. This allows them to be shared across different ma-
chines, even though those machines may have a different kind of processor alto-
gether.

include C header files. These are for development.
src Csource files. These are sources to the kernel or locally built packages.

tmp Temporary files. A convenient place for a running program to create a file for tem-
porary use.

17.3 LINUX on a Single 1.44 Megabyte Floppy Disk

You can get LINUX£) to run on a 1.44 megabyte floppy disk if you trim all unneeded
files off an old Slackware distribution with a 2.0.3x kernel. You can compile a small
2.0.3x kernel to about 400 kilobytes (compressed) (see Chapter 42). A file system can
be reduced to 2-3 megabytes of absolute essentials and when compressed will fit into
1 megabyte. If the total is under 1.44 megabytes, then you have your LINUX{} on one

floppy. The file list might be as follows (includes all links):

/bin /etc /1ib /sbin /var

/bin/sh /etc/default /1lib/ld.so /sbin/e2fsck /var/adm
/bin/cat /etc/fstab /1lib/libc.so.5 /sbin/fdisk /var/adm/utmp
/bin/chmod /etc/group /1lib/ld-linux.so.1 /sbin/fsck /var/adm/cron
/bin/chown /etc/host.conf /lib/libcurses.so.1l /sbin/ifconfig /var/spool
/bin/cp /etc/hosts /1ib/libc.so.5.3.12 /sbin/iflink /var/spool/uucp
/bin/pud /etc/inittab /1lib/libtermcap.s0.2.0.8 /sbin/ifsetup /var/spool/uucp/SYSLOG
/bin/dd /etc/issue /1lib/libtermcap.so.2 /sbin/init /var/spool/uucp/ERRLOG
/bin/df /etc/utmp /1lib/libext2fs.s0.2.3 /sbin/mke2fs /var/spool/locks
/bin/du /etc/networks /1lib/libcom.err.so.2 /sbin/mkfs /var/tmp
/bin/free /etc/passwd /1lib/libcom.err.so.2.0 /sbin/mkfs.minix /var/run
/bin/gunzip /etc/profile /1ib/libext2fs.s0.2 /sbin/mklost+found /var/run/utmp
/bin/gzip /etc/protocols /1lib/libm.s0.5.0.5 /sbin/mkswap

/bin/hostname /etc/rc.d /1ib/libm.so.5 /sbin/mount /home/user
/bin/login /ete/rc.d/rc.0 /1lib/cpp /sbin/route

/bin/ls /etc/rc.d/rc.K /sbin/shutdown /mnt

/bin/mkdir Jetc/rc.d/rc.M /usr /sbin/swapoff

/bin/myv Jetc/rc.d/rc.S /usr/adm /sbin/swapon /proc

/bin/ps /etc/rc.d/rc.inetl /usr/bin /sbin/telinit

/bin/rm /etc/rc.d/rc.6 /usr/bin/less /sbin/umount /tmp

/bin/stty /etc/rc.d/rc.4 /usr/bin/more /sbin/agetty

/bin/su /etc/re.d/rc.inet2 /usr/bin/sleep /sbin/update /dev/<various-devices>
/bin/sync /etc/resolv.conf /usr/bin/reset /sbin/reboot

/bin/zcat /etc/services /usr/bin/zless /sbin/netcfg

/bin/dircolors /etc/termcap /usr/bin/file /sbin/killalls

/bin/mount /etc/motd /usr/bin/fdformat /sbin/fsck.minix

/bin/umount /etc/magic /usr/bin/strings /sbin/halt

/bin/bash /etc/DIR.COLORS /usr/bin/zgrep /sbin/badblocks

/bin/domainname /etc/HOSTNAME /usr/bin/nc /sbin/kerneld

/bin/head /etc/mtools /usr/bin/which /sbin/fsck.ext2

/bin/kill /etc/ld.so.cache /usr/bin/grep

/bin/tar /etc/psdevtab /usr/sbin

/bin/cut /etc/mtab /usr/sbin/showmount

/bin/uname /etc/fastboot /usr/sbin/chroot

/bin/ping /usr/spool

/bin/1n /usr/tmp

/bin/ash

Note that the et c directory differs from that of a RedHat distribution. The sys-

tem startup files /etc/rc.d are greatly simplified under Slackware.

138

17. Overview of the UNIX Directory Layout 17.3. LINUX on a Single Floppy Disk

The /1ib/modules directory has been stripped for the creation of this floppy.
/1lib/modules/2.0.36 would contain dynamically loadable kernel drivers (mod-
ules). Instead, all needed drivers are compiled into the kernel for simplicity (explained
in Chapter 42).

At some point, try creating a single floppy distribution as an exercise. This task
should be most instructive to a serious system administrator. At the very least, you
should look through all of the commands in the bin directories and the sbin directo-
ries above and browse through the man pages of any that are unfamiliar.

The preceding file system comes from the morecram-1.3 package available
from http://rute.sourceforge.net/morecram-1.3.tar.gz. It can be downloaded to provide a
useful rescue and setup disk. Note that there are many such rescue disks available
which are more current than morecram.

139

17.3. LINUX on a Single Floppy Disk 17. Overview of the UNIX Directory Layout

140

Chapter 18

UNIX Devices

UNIX was designed to allow transparent access to hardware devices across all CPU
architectures. UNIX also supports the philosophy that all devices be accessible using
the same set of command-line utilities.

18.1 Device Files

UNIX has a beautifully consistent method of allowing programs to access hardware.
Under UNIX, every piece of hardware is a file. To demonstrate this novelty, try viewing
the file /dev/hda (you will have to be root to run this command):

[less -f /dev/hda]

/dev/hda is not really a file at all. When you read from it, you are actually reading
directly from the first physical hard disk of your machine. /dev/hda is known as a
device file, and all of them are stored under the /dev directory.

Device files allow access to hardware. If you have a sound card installed and
configured, you can try:

[cat /dev/dsp > my_recording j

Say something into your microphone and then type:

[cat my_recording > /dev/dsp]

The system will play out the sound through your speakers. (Note that this does not
always work, since the recording volume or the recording speed may not be set cor-
rectly.)

141

18.2. Block and Character Devices 18. UNIX Devices

If no programs are currently using your mouse, you can also try:

[cat /dev/mouse]

If you now move the mouse, the mouse protocol commands will be written directly
to your screen (it will look like garbage). This is an easy way to see if your mouse is
working, and is especially useful for testing a serial port. Occasionally this test doesn’t
work because some command has previously configured the serial port in some odd
way. In that case, also try:

[cu -s 1200 -1 /dev/mouse j

At a lower level, programs that access device files do so in two basic ways:

e They read and write to the device to send and retrieve bulk data (much like less
and cat above).

e They use the C ioct1 (IO Control) function to configure the device. (In the case
of the sound card, this might set mono versus stereo, recording speed, or other
parameters.)

Because every kind of device that one can think of (except for network cards) can
be twisted to fit these two modes of operation, UNIX’s scheme has endured since its
inception and is the universal method of accessing hardware.

18.2 Block and Character Devices

Hardware devices can generally be categorized into random access devices like disk
and tape drives, and serial devices like mouse devices, sound cards, and terminals.

Random access devices are usually accessed in large contiguous blocks of data
that are stored persistently. They are read from in discrete units (for most disks, 1024
bytes at a time). These are known as block devices. Running an 1s -1 /dev/hda
shows a b on the far left of the listing, which means that your hard disk is a block
device:

[brw—r ————— 1 root disk 3, 64 Apr 27 1995 /dev/hdb]

Serial devices, on the other hand, are accessed one byte at a time. Data can be
read or written only once. For example, after a byte has been read from your mouse,
the same byte cannot be read by some other program. Serial devices are called character
devices and are indicated by a ¢ on the far left of the listing. Your /dev/dsp (Digital
Signal Processor—that is, your sound card) device looks like:

142

18. UNIX Devices 18.3. Major and Minor Device Numbers

[crwfrffrff 1 root Sys 14, 3 Jul 18 1994 /dev/dsp J

18.3 Major and Minor Device Numbers

Devices are divided into sets called major device numbers. For instance, all SCSI disks
are major number 8. Further, each individual device has a minor device number like
/dev/sda, which is minor device 0. Major and minor device numbers identify the
device to the kernel. The file name of the device is arbitrary and is chosen for conve-
nience and consistency. You can see the major and minor device number (8, 0) in
the 1s listing for /dev/sda:

[brwfrwffff 1 root disk 8, 0 May 5 1998 /dev/sda]

18.4 Common Device Names

A list of common devices and their descriptions follows. The major num-
bers are shown in parentheses. The complete reference for devices is the file
/usr/src/linux/Documentation/devices.txt.

/dev/hd?? hd stands for hard disk, but refers here only to IDE devices—that is, com-
mon hard disks. The first letter after the hd dictates the physical disk drive:
/dev/hda (3) First drive, or primary master.

/dev/hdb (3) Second drive, or primary slave.

/dev/hdc (22) Third drive, or secondary master.

/dev/hdd (22) Fourth drive, or secondary slave.

When accessing any of these devices (with, say, less /dev/hda), you would

be reading raw from the actual physical disk starting at the first sector of the first
track, sequentially, until the last sector of the last track.

Partitions “ With all operating systems, disk drives are divided into sections called partitions. A
typical disk might have 2 to 10 partitions. Each partition acts as a whole disk on its own, giving the
effect of having more than one disk. For instance, you might have Windows installed on one partition
and LINUX{) installed on another. More details come in Chapter 19 are named /dev/hdal,
/dev/hda2, etc., indicating the first, second, etc., partition on physical drive a.

143

18.4. Common Device Names 18. UNIX Devices

/dev/sd?? (8) sd stands for SCSI disk, the high-end drives mostly used by servers.
sda is the first physical disk probed, and so on. Probing goes by SCSI ID and has
a system completely different from that of IDE devices. /dev/sdal is the first
partition on the first drive, etc.

/dev/ttyS? (4) These are serial devices numbered from 0 up. /dev/ttyS0 is your
first serial port (COM1 under MS-DOS or Windows). If you have a multiport
card, these can go to 32, 64, and up.

/dev/psaux (10) PS/2 mouse.

/dev/mouse A symlink to /dev/ttyS0 or /dev/psaux. Other mouse devices are
also supported.

/dev/modem A symlink to /dev/ttyS1 or whatever port your modem is on.
/dev/cua? (4) Identical to ttyS? but now fallen out of use.

/dev/£d? (2) Floppy disk. £d0 is equivalent to your A: drive and £d1 your B: drive.
The £d40 and £d1 devices autodetect the format of the floppy disk, but you can
explicitly specify a higher density by using a device name like /dev/£d0H1920,
which gives you access to 1.88 MB, formatted, 3.5-inch floppies. Other floppy
devices are shown in Table 18.1.

See Section 19.3.4 on how to format these devices.
/dev/par? (6) Parallel port. /dev/par0 is your first parallel port or LPT1 under DOS.
/dev/1p? (6) Line printer. Identical to /dev/par?.

/dev/urandom Random number generator. Reading from this device gives pseudo-
random numbers.

/dev/st? (9) SCSI tape. SCSI backup tape drive.

/dev/zero (1) Produces zero bytes, and as many of them as you need. This is useful
if you need to generate a block of zeros for some reason. Use dd (see Section
18.5.2) to read a specific number of zeros.

/dev/null (1) Null device. Reads nothing. Anything you write to the device is dis-
carded. This is very useful for discarding output.

/dev/pd? Parallel port IDE disk.

/dev/ped? Parallel port ATAPI CD-ROM.

/dev/p£? Parallel port ATAPI disk.

/dev/sr? SCSI CD-ROM.

/dev/scd? SCSI CD-ROM (Identical, alternate name).

144

18. UNIX Devices 18.4. Common Device Names

Table 18.1 Floppy device names
| Floppy devices are named /dev/ fdlmnnnn

i 0 A drive

B: drive

“double density” 360 KB or 5.25 inch

“high density” 1.2 MB or 5.25 inch

“quad density” 5.25 inch

“double density” 720 KB or 3.5 inch

“high density” 1.44 MB or 3.5 inch

Extra density 3.5 inch.

Any 3.5-inch floppy. Note that u now replaces
D, H, and E, thus leaving it up to the user to de-
cide if the floppy has enough density for the

m

c Mmoo o Qe

format.

nnnn | 360 410 420 720 The size of the format. With D, H, and E, 3.5-
800 820 830 880 inch floppies have devices only for the sizes
1040 1120 1200 that are likely to work. For instance, there is no
1440 1476 1494 /dev/£d0D1440 because double density disks
1600 1680 1722 won’t manage 1440 KB. /dev/£d0H1440 and
1743 1760 1840 /dev/£d0H1920 are probably the ones you
1920 2880 3200 are most interested in.

3520 3840

/dev/sg? SCSI generic. This is a general-purpose SCSI command interface for devices
like scanners.

/dev/£b? (29) Frame buffer. This represents the kernel’s attempt at a graphics driver.

/dev/cdrom A symlinkto /dev/hda, /dev/hdb, or /dev/hdc. It can also be linked
to your SCSI CD-ROM.

/dev/ttyI? ISDN modems.

/dev/tty? (4) Virtual console. This is the terminal device for the virtual console itself
and is numbered /dev/ttyl through /dev/tty63.

/dev/tty?? (3) and /dev/pty?? (2) Other TTY devices used for emulating a termi-
nal. These are called pseudo-TTYs and are identified by two lowercase letters
and numbers, such as ttyg3. To nondevelopers, these are mostly of theoretical
interest.

The file /usr/src/linux/Documentation/devices.txt also has this to say
(quoted verbatim):

145

18.4. Common Device Names 18. UNIX Devices

Recommended links

It is recommended that these links exist on all systems:

/dev/core /proc/kcore | symbolic | Backward compatibility
/dev/ramdisk | ram0 symbolic | Backward compatibility
/dev/ftape qfto symbolic | Backward compatibility
/dev/bttv0 videoO symbolic | Backward compatibility
/dev/radio radio0 symbolic | Backward compatibility
/dev/i2o* /dev/i20/* symbolic | Backward compatibility
/dev/scd? sr? hard Alternate SCSI CD-ROM
name
Locally defined links

The following links may be established locally to conform to the configuration of
the system. This is merely a tabulation of existing practice, and does not constitute
a recommendation. However, if they exist, they should have the following uses:

/dev/mouse mouse port symbolic | Current mouse device
/dev/tape tape device symbolic | Current tape device
/dev/cdrom CD-ROM device | symbolic | Current CD-ROM device
/dev/cdwriter | CD-writer symbolic | Current CD-writer device
/dev/scanner scanner symbolic | Current scanner device
/dev/modem modem port symbolic | Current dialout device
/dev/root root device symbolic | Current root file system
/dev/swap swap device symbolic | Current swap device

/dev/modem should not be used for a modem which supports dial-in as well as
dialout, as it tends to cause lock file problems. If it exists, /dev/modem should
point to the appropriate primary TTY device (the use of the alternate callout devices
is deprecated).

For SCSI devices, /dev/tape and /dev/cdrom should point to the “cooked”
devices (/dev/st* and /dev/sr¥, respectively), whereas /dev/cdwriter and
/dev/scanner should point to the appropriate generic SCSI devices (/dev/sg*).

/dev/mouse may point to a primary serial TTY device, a hardware mouse device,
or a socket for a mouse driver program (e.g. /dev/gpmdata).

Sockets and pipes
Non-transient sockets and named pipes may exist in /dev. Common entries are:
/dev/printer | socket | Ipd local socket

/dev/log socket | syslog local socket
/dev/gpmdata | socket | mouse multiplexer

146

18. UNIX Devices 18.5. dd, tar, and Tricks with Block Devices

18.5 dd, tar, and Tricks with Block Devices

dd probably originally stood for disk dump. It is actually just like cat except it can
read and write in discrete blocks. It essentially reads and writes between devices while
converting the data in some way. It is generally used in one of these ways:

dd if=<in-file> of=<out-file> [bs=<block-size>] \
[count=<number-of-blocks>] [seek=<output-offset>] \
[skip=<input-offset>]

dd if=<in-file> [bs=<block-size>] [count=<number-of-blocks>] \
[skip=<input-offset>] > <outfile>

dd of=<out-file> [bs=<block-size>] [count=<number-of-blocks>] \
[seek=<output-offset>] < <infile>

To use dd, you must specify an input file and an output file with the if= and
of= options. If the o f= option is omitted, then dd writes to stdout. If the i f= option
is omitted, then dd reads from stdin. “If you are confused, remember that dd thinks of in and out
with respect to itself

Note that dd is an unforgiving and destructive command that should be used with
caution.

18.5.1 Creating boot disks from boot images

To create a new RedHat boot floppy, find the boot . img file on ftp.redhat.com,
and with a new floppy, run:

[dd if=boot.img of=/dev/£fd0]

This command writes the raw disk image directly to the floppy disk. All distributions
will have similar disk images for creating installation floppies (and sometimes rescue
floppies).

18.5.2 Erasing disks

If you have ever tried to repartition a LINUX{} disk back into a DOS/Windows disk,
you will know that DOS/Windows FDISK has bugs in it that prevent it from recreating
the partition table. A quick

[dd if=/dev/zero of=/dev/hda bs=1024 count=10240]

147

18.5. dd, tar, and Tricks with Block Devices 18. UNIX Devices

will write zeros to the first 10 megabytes of your first IDE drive. This will wipe out the
partition table as well as any file system information and give you a “brand new” disk.

To zero a floppy disk is just as easy:

[dd if=/dev/zero of=/dev/fd0 bs=1024 count=1440 :

Even writing zeros to a floppy may not be sufficient. Specialized equipment can
probably still read magnetic media after it has been erased several times. If, however,
you write random bits to the floppy, it becomes completely impossible to determine
what was on it:

mknod /dev/urandom c 1 9
for 1 in 1 2 3 4 ; do

dd if=/dev/urandom of=/dev/fd0 bs=1024 count=1440
done

18.5.3 Identifying data on raw disks

Here is a nice trick to find out something about a hard drive:

[dd if=/dev/hdal count=1 bs=512 | file -)

gives x86 boot sector.

To discover what a floppy disk is, try

[dd if=/dev/£fd0 count=1 bs=512 | file -]

which gives x86 boot sector, system)k?/bIHC, FAT (12 bit) for DOS
floppies.

18.5.4 Duplicating a disk

If you have two IDE drives that are of identical size, and provided that you are sure
they contain no bad sectors and provided neither are mounted, you can run

[dd if=/dev/hdc of=/dev/hdd]

to copy the entire disk and avoid having to install an operating system from scratch.
It doesn’t matter what is on the original (Windows, LINUXQ\, or whatever) since each
sector is identically duplicated; the new system will work perfectly.

(If they are not the same size, you will have to use tar or mirrordir to replicate the
file system exactly.)

148

18. UNIX Devices 18.5. dd, tar, and Tricks with Block Devices

18.5.5 Backing up to floppies

You can use tar to back up to any device. Consider periodic backups to an ordinary
IDE drive instead of a tape. Here we back up to the secondary slave:

[tar —-cvzf /dev/hdd /bin /boot /dev /etc /home /lib /sbin /usr /var]

tar can also back up across multiple floppy disks:

[tar —-cvMf /dev/fd0 /home/simon)

18.5.6 Tape backups

tar traditionally backs up onto tape drives. The commands

mt —-f /dev/st0 rewind
tar -cvf /dev/st0 /home

rewind scsi tape 0 and archive the /home directory onto it. You should not try to use
compression with tape drives because they are error prone, and a single error could
make the entire archive unrecoverable. The mt command stands for magnetic tape
and controls generic SCSI tape devices. See also mt (1).

18.5.7 Hiding program output, creating blocks of zeros

If you don’t want to see any program output, just append > /dev/null to the com-
mand. For example, we aren’t often interested in the output of make. ~ymake is discussed
later™\. Here we absorb everything save for error messages.

[make > /dev/null]

Then, of course, we can absorb all output including error messages with either

[make >& /dev/null]
or
{make > /dev/null 2>&1]

The device /dev/null finds innumerable uses in shell scripting to suppress the out-
put of a command or to feed a command dummy (empty) input. /dev/null is a safe

149

18.6. Creating Devices with mknod and /dev/MAKEDEV 18. UNIX Devices

file from a security point of view. It is often used when a file is required for some fea-
ture in a configuration script, and you would like the particular feature disabled. For
instance, specifying the users shell to /dev/null inside the password file will certainly
prevent insecure use of a shell, and is an explicit way of saying that that account does
not allow shell logins.

You can also use /dev/null to create a file containing nothing:

Ecat /dev/null > myfile)

or alternatively, to create a file containing only zeros. Try

[dd if=/dev/zero bs=1024 count=<number-of-kilobytes> > myfile]

18.6 Creating Devices with mknod and /dev/MAKEDEV

Although all devices are listed in the /dev directory, you can create a device anywhere
in the file system by using the mknod command:

[mknod [-m <mode>] <file-name> [b|c] <major-number> <minor-number>

The letters b and c are for creating a block or character device, respectively.

To demonstrate, try

mknod -m 0600 ~/my-floppy b 2 0
1ls -al /dev/£fd0 ~/my-floppy

my-floppy can be used just like /dev/£d0

Note carefully the mode (i.e., the permissions) of /dev/£d0. /dev/£d0 should
be readable and writable only to root and to users belonging to the £floppy group,
since we obviously don’t want an arbitrary user to be able to log in (remotely) and
overwrite a floppy disk.

In fact, this is the reason for having devices represented as files in the first place.
UNIX files naturally support group access control, and therefore so do devices.

To create devices that are missing from your /dev directory (some esoteric de-
vices will not be present by default), simply look up the device’s major and minor num-
berin /usr/src/linux/Documentation/devices.txt and use the mknod com-
mand. This procedure is, however, somewhat tedious, and the script /dev/MAKEDEV
is usually available for convenience. You must be in the /dev directory before you run this
script.

150

18. UNIX Devices 18.6. Creating Devices with mknod and /dev/MAKEDEV

Typical usage of MAKEDEV is

cd /dev
./MAKEDEV -v £d0
./MAKEDEV -v £dl

to create a complete set of floppy disk devices.
The man page for MAKEDEV contains more details. In particular, it states:
Note that programs giving the error “ENOENT: No such file or directory” normally

means that the device file is missing, whereas “ENODEV: No such device” normally
means the kernel does not have the driver configured or loaded.

151

18.6. Creating Devices with mknod and /dev/MAKEDEV 18. UNIX Devices

152

Chapter 19

Partitions, File Systems,
Formatting, Mounting

19.1 The Physical Disk Structure

Physical disks are divided into partitions. “See /dev/hd?? under Section 184\ Informa-
tion as to how the disk is partitioned up is stored in a partition table, which is a small
area of the disk separate from the partitions themselves.

19.1.1 Cylinders, heads, and sectors

The physical drive itself usually comprises several actual disks of which both sides are
used. The sides are labelled 0, 1, 2, 3, and so on, and are also called heads because
one magnetic head per side does the actual reading and writing. Each side/head has
tracks, and each track is divided into segments called sectors. Each sector typically
holds 512 bytes. The total amount of space on the drive in bytes is therefore:

512 x (sectors-per-track) x (tracks-per-side) x (number-of-sides)

A single track and all the tracks of the same diameter (on all the sides) are called a
cylinder. Disks are normally talked about in terms of “cylinders and sectors” instead of
“sides, tracks, and sectors.” Partitions are (usually) divided along cylinder boundaries.
Hence, disks do not have arbitrarily sized partitions; rather, the size of the partition is
usually a multiple of the amount of data held in a single cylinder. Partitions therefore
have a definite inner and outer diameter. Figure 19.1 illustrates the layout of a hard
disk.

153

19.1. The Physical Disk Structure 19. Partitions, File Systems, Formatting, Mounting

Side 5

Figure 19.1 Hard drive platters and sector layout

19.1.2 Large Block Addressing

The system above is quite straightforward except for the curious limitation that par-
tition tables have only 10 bits in which to store the partition’s cylinder offset. This
means that no disk can have more than 1024 cylinders. This limitation was overcome
by multiplying up the number of heads in software to reduce the number of cylinders,
“«Called LBA (Large Block Addressing) mode™\ hence portraying a disk of impossible propor-
tions. The user, however, need never be concerned that the physical disk is completely
otherwise.

19.1.3 Extended partitions

The partition table has room for only four partitions. For more partitions, one of these
four partitions can be divided into many smaller partitions, called logical partitions.
The original four are then called primary partitions. If a primary partition is subdivided
in this way, it is known as an extended primary or extended partition. Typically, the
first primary partition will be small (/dev/hdal, say). The second primary partition
will fill the rest of the disk as an extended partition (/dev/hda2, say). In this case,
the entries in the partition table of /dev/hda3 and /dev/hda4 will be blank. The

154

19. Partitions, File Systems, Formatting, Mounting 19.2. Partitioning a New Disk

extended partition can be subdivided repeatedly to give /dev/hda5, /dev/hda6, and
SO on.

19.2 Partitioning a New Disk

A new disk has no partition information. Typing fdisk will start an interactive parti-
tioning utility. The command

[fdisk /dev/hda]

fdisks your primary master.

What follows is an example of the partitioning of a new hard drive. Most dis-
tributions these days have a simpler graphical system for creating partitions, so using
fdisk will not be necessary at installation time. However, adding a new drive or
transferring/copying a LINUX{} system to new hardware will require partitioning.

On UNIX, each partition has its own directory. Files under one directory might be
stored on a different disk or a different partition to files in another directory. Typically, the
/var directory (and all subdirectories beneath it) is stored on a different partition from
the /usr directory (and all subdirectories beneath it).

Table 19.2 offers a general guideline as to how a server machine should be set
up (with home computers, you can be far more liberal—most home PCs can do with
merely a swap and / partition.). When you install a new server, your distribution
should allow you to customize your partitions to match this table.

If another operating system is already installed in the first partition, you can type
p and might see:

Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 788 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hdal 1 312 2506108+ c Win95 FAT32 (LBA)

In such a case, you can just start adding further partitions.

The exact same procedure applies in the case of SCSI drives. The only differ-
ence is that /dev/hd? changes to /dev/sd?. (See Chapter 42 for SCSI device driver
information.)

Here is a partitioning session with fdisk:

[root@cericon /root]# fdisk /dev/hda
Device contains neither a valid DOS partition table, nor Sun or SGI disklabel

155

19.2. Partitioning a New Disk 19. Partitions, File Systems, Formatting, Mounting

Table 19.1 Which directories should have their own partitions, and their partitions’
sizes

Directory | Size Why?
(Megabytes)

swap Twice the | This is where memory is drawn from when you run out. The swap partition gives pro-
size of your | grams the impression that you have more RAM than you actually do, by swapping data
RAM in and out of this partition.

Swap partitions cannot be over 128 MB, but you can have many of them. This limitation
has been removed in newer kernels.

Disk access is obviously slow compared to direct RAM, but when a lot of idle programs
are running, swapping to disk allows more real RAM for needy programs.

/boot 5-10 This directory need not be on a different partition to your / partition (below). Whatever
you choose, there must be no chance that a file under /boot could span sectors that are
over the 1024 cylinder boundary (i.e., outside of the first 500 megabytes of your hard
drive). This is why /boot (or /) is often made the first primary partition of the hard
drive. If this requirment is not met, you get the famous LI prompt on a nonbooting
system. See Section 31.2.4.

/var 100-1000 Here is variable data, like log files, mail spool files, database files, and your web proxy
cache (web cache and databases may need to be much bigger though). For newer distri-
butions, this directory also contains any local data that this site serves (like FTP files or
web pages). If you are going to be using a web cache, either store the stuff in a separate
partition/disk or make your /var partition huge. Also, log files can grow to enormous
sizes when there are problems. You don’t want a full or corrupted /var partition to effect
the rest of your disk. This is why it goes in its own partition.

/tmp 50 Here is temporary data. Programs access this frequently and need it to be fast. It goes in
a separate partition because programs really need to create a temporary file sometimes,
and this should not be affected by other partitions becoming full. This partition is also
more likely to be corrupted.

/usr 500-1500 Here is your distribution (Debian@, RedHat, Mandrake, etc.). It can be mounted read-
only. If you have a disk whose write access can physically be disabled (like some SCSI
drives), then you can put /usr on a separate drive. Doing so will make for a much more
secure system. Since /usr is stock standard, this is the partition you can most afford
to lose. Note however that /usr/local/ may be important to you—possibly link this

elsewhere.
/home Remainder Here are your users” home directories. For older distributions, this directory also contains
of disk any local data that this site serves (like FTP files or web pages).
/ 50-100 Anything not in any of the other directories is directly under your / directory. These

are the /bin (5MB), (possibly) /boot (3MB), /dev (0.1MB), /etc (4MB), /1ib (20MB),
/mnt (OMB), /proc (OMB), and /sbin (4MB) directories. They are essential for the sys-
tem to start up and contain minimal utilities for recovering the other partitions in an
emergency. As stated above, if the /boot directory is in a separate partition, then / must
be below the 1024 cylinder boundary (i.e., within the first 500 megabytes of your hard
drive).

Building a new DOS disklabel. Changes will remain in memory only,
until you decide to write them. After that, of course, the previous
content won’t be recoverable.

First, we use the p option to print current partitions—

Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 788 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System

156

19. Partitions, File Systems, Formatting, Mounting 19.2. Partitioning a New Disk

—of which there are clearly none. Now n lets us add a new partition:

Command (m for help): n
Command action

e extended

P primary partition (1-4)

We want to define the first physical partition starting at the first cylinder:

Partition number (1-4): 1
First cylinder (1-788, default 1): 1

We would like an 80-megabyte partition. fdisk calculates the last cylinder au-
tomatically with:

ELast cylinder or +size or +sizeM or +sizeK (1-788, default 788): +80M

Our next new partition will span the rest of the disk and will be an extended
partition:

Command (m for help): n
Command action
e extended
P primary partition (1-4)
5 | e
Partition number (1-4): 2
First cylinder (12-788, default 12): 12
Last cylinder or +size or +sizeM or +sizeK (12-788, default 788): 788

Our remaining logical partitions fit within the extended partition:

Command (m for help): n
Command action
1 logical (5 or over)
P primary partition (1-4)
5 |1
First cylinder (12-788, default 12): 12
Last cylinder or +size or +sizeM or +sizeK (12-788, default 788): +64M

Command (m for help): n
10 | Command action
1 logical (5 or over)
P primary partition (1-4)
1
First cylinder (21-788, default 21): 21
15 | Last cylinder or +size or +sizeM or +sizeK (21-788, default 788): +100M

157

20

25

30

35

19.2. Partitioning a New Disk 19. Partitions, File Systems, Formatting, Mounting

Command (m for help): n
Command action
1 logical (5 or over)
P primary partition (1-4)
1
First cylinder (34-788, default 34): 34
Last cylinder or +size or +sizeM or +sizeK (34-788, default 788): +200M

Command (m for help): n
Command action
1 logical (5 or over)
o) primary partition (1-4)
1
First cylinder (60-788, default 60): 60
Last cylinder or +size or +sizeM or +sizeK (60-788, default 788): +1500M

Command (m for help): n
Command action
1 logical (5 or over)
P primary partition (1-4)
1
First cylinder (252-788, default 252): 252
Last cylinder or +size or +sizeM or +sizeK (252-788, default 788): 788

The default partition type is a single byte that the operating system will look at to
determine what kind of file system is stored there. Entering 1 lists all known types:

Command (m for help): 1
0 Empty 16 Hidden FAT16 61 SpeedStor a6 OpenBSD
[...]
8 AIX 4d QNX4.x 82 Linux swap db CP/M / CTOS /
9 AIX bootable 4e ONX4.x 2nd part 83 Linux el DOS access
[...]
12 Compaq diagnost 56 Golden Bow a5 BSD/386 ff BBT
14 Hidden FAT16 <3 5c¢c Priam Edisk

fdisk will set the type to Linux by default. We only need to explicitly set the
type of the swap partition:

Command (m for help): t

Partition number (1-9): 5

Hex code (type L to list codes): 82

Changed system type of partition 5 to 82 (Linux swap)

Now we need to set the bootable flag on the first partition, since BIOS’s will not
boot a disk without at least one bootable partition:

(Command (m for help): a

158

19. Partitions, File Systems, Formatting, Mounting 19.2. Partitioning a New Disk

L?artition number (1-10): 1 J

Displaying our results gives:

Command (m for help): p

Disk /dev/hda: 255 heads, 63 sectors, 788 cylinders
Units = cylinders of 16065 * 512 bytes

Device Boot Start End Blocks Id System
/dev/hdal * 1 11 88326 83 Linux
/dev/hda?2 12 788 6241252+ 5 Extended
/dev/hdab 12 20 72261 82 Linux swap

10 | /dev/hda6 21 33 104391 83 Linux
/dev/hda’7 34 59 208813+ 83 Linux
/dev/hda8 60 251 1542208+ 83 Linux
/dev/hda9 252 788 4313421 83 Linux

At this point, nothing has been committed to disk. We write it as follows (Note:
this step is irreversible):

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
5 | Syncing disks.

WARNING: If you have created or modified any DOS 6.x
partitions, please see the fdisk manual page for additional
information.

Even having written the partition, fdi sk may give a warning that the kernel does
not know about the new partitions. This happens if the disk is already in use. In this
case, you will need to reboot. For the above partition, the kernel will give the following
information at boot time:

Partition check:
hda: hdal hda2 < hda5 hda6 hda7 hda8 hda9 >

The < ...> shows that partition hda2 is extended and is subdivided into five smaller
partitions.

159

19.3. Formatting Devices 19. Partitions, File Systems, Formatting, Mounting

19.3 Formatting Devices

19.3.1 File systems

Disk drives are usually read in blocks of 1024 bytes (two sectors). From the point of
view of anyone accessing the device, blocks are stored consecutively—there is no need
to think about cylinders or heads—so that any program can read the disk as though it
were a linear tape. Try

less /dev/hdal
less -f /dev/hdal

Now a complex directory structure with many files of arbitrary size needs to be
stored in this contiguous partition. This poses the problem of what to do with a file
that gets deleted and leaves a data “hole” in the partition, or a file that has to be split
into parts because there is no single contiguous space big enough to hold it. Files also
have to be indexed in such a way that they can be found quickly (consider that there
can easily be 10,000 files on a system). UNIX’s symbolic/hard links and devices files
also have to be stored.

To cope with this complexity, operating systems have a format for storing files
called the file system (£s). Like MS-DOS with its FAT file system or Windows with its
FAT32 file system, LINUX{} has a file system called the 2nd extended file system, or ext 2.

Whereas ext 2 is the traditional native LINUX{) file system, three other native file
systems have recently become available: SGI's XFS file system, the ext3fs file system,
and the reiserfs file system. These three support fast and reliable recovery in the event
of a power failure, using a feature called journaling. A journaling file system prewrites
disk alterations to a separate log to facilitate recovery if the file system reaches an
incoherent state. (See Section 19.5.)

19.3.2 mke2fs

To create a file system on a blank partition, use the command mk £s (or one of its vari-
ants). To create a LINUX{) ext 2 file system on the first partition of the primary master
run:

Lmkfs -t ext2 -c /dev/hdal j

or, alternatively

[mkers -c /dev/hdal]

The —c option means to check for bad blocks by reading through the entire disk first.

160

19. Partitions, File Systems, Formatting, Mounting 19.3. Formatting Devices

This is a read-only check and causes unreadable blocks to be flagged as such and not
be used. To do a full read-write check, use the badblocks command. This command
writes to and verifies every bit in that partition. Although the —c option should always
be used on a new disk, doing a full read-write test is probably pedantic. For the above
partition, this test would be:

badblocks -o blocks-list.txt -s -w /dev/hdal 88326
mke2fs -1 blocks-list.txt /dev/hdal

After running mke2fs, we will find that

[dd if=/dev/hdal count=8 bs=1024 | file -]

gives Linux/1386 ext2 filesystem.

19.3.3 Formatting floppies and removable drives

New kinds of removable devices are being released all the time. Whatever the device,
the same formatting procedure is used. Most are IDE compatible, which means you
can access them through /dev/hd?.

The following examples are a parallel port IDE disk drive, a parallel port ATAPI
CD-ROM drive, a parallel port ATAPI disk drive, and your “A:” floppy drive, respec-
tively:

mke2fs -c /dev/pdal
mke2fs -c /dev/pcd0
mke2fs -c /dev/pf0
mke2fs -c /dev/£d0

Actually, using an ext2 file system on a floppy drive wastes a lot of space.
Rather, use an MS-DOS file system, which has less overhead and can be read by anyone
(see Section 19.3.4).

You often will not want to be bothered with partitioning a device that is only
going to have one partition anyway. In this case, you can use the whole disk as one
partition. An example is a removable IDE drive as a primary slave L5120 disks and Jazz
drives as well as removable IDE brackets are commercial examples™\.:

[mkers -c¢ /dev/hdb]

161

19.3. Formatting Devices 19. Partitions, File Systems, Formatting, Mounting

19.3.4 Creating MS-DOS floppies

Accessing files on MS-DOS/Windows floppies is explained in Section 4.16. The com-
mand mformat A: will format a floppy, but this command merely initializes the file
system; it does not check for bad blocks or do the low-level formatting necessary to
reformat floppies to odd storage sizes.

A command, called superformat, from the fdutils package “\You may have to
find this package on the Internet. See Chapter 24 for how to compile and install source packages™\ formats
a floppy in any way that you like. A more common (but less thorough) command
is fdformat from the util-linux package. It verifies that each track is working
properly and compensates for variations between the mechanics of different floppy
drives. To format a 3.5-inch 1440-KB, 1680-KB, or 1920-KB floppy, respectively, run:

cd /dev

./MAKEDEV -v f£dO
superformat /dev/fd0H1440
superformat /dev/fd0H1690
superformat /dev/fd0H1920

Note that these are “long file name” floppies (VFAT), not old 13-character-
filename MS-DOS floppies.

Most users would have only ever used a 3.5-inch floppy as a “1.44 MB” floppy.
In fact, the disk media and magnetic head can write much more densely than this
specification, allowing 24 sectors per track to be stored instead of the usual 18. This
is why there is more than one device file for the same drive. Some inferior disks will,
however, give errors when trying to format that densely—superformat will show
errors when this happens.

See Table 18.1 on page 145 for the naming conventions of floppy devices, and
their many respective formats.

19.3.5 mkswap, swapon, and swapoff

The mk swap command formats a partition to be used as a swap device. For our disk,

Emkswap -c /dev/hdab)

—c has the same meaning as previously—to check for bad blocks.

Once the partition is formatted, the kernel can be signalled to use that partition
as a swap partition with

[swapon /dev/hda5]

162

19. Partitions, File Systems, Formatting, Mounting 19.4. Device Mounting

and to stop usage,

[swapoff /dev/hdab J

Swap partitions cannot be larger than 128 MB, although you can have as many of them
as you like. You can swapon many different partitions simultaneously.

19.4 Device Mounting

The question of how to access files on an arbitrary disk (without C:, D:, etc., notation,
of course) is answered here.

In UNIX, there is only one root file system that spans many disks. Different di-
rectories may actually exist on a different physical disk.

To bind a directory to a physical device (like a partition or a
CD-ROM) so that the device’s file system can be read is called
mounting the device.

The mount command is used as follows:

mount [-t <fstype>] [-o0 <option>] <device> <directory>
umount [—-f] [<device>|<directory>]

The -t option specifies the kind of file system, and can often be omitted since LINUX[&
can autodetect most file systems. <£stype> canbe one of adfs, affs, autofs, coda,
coherent, devpts, efs, ext2, hfs, hpfs, 1is09660, minix, msdos, ncpfs, nfs,
ntfs, proc, qnx4, romfs, smbfs, sysv, ufs, umsdos, vfat, xenix, or xiafs. The
most common file systems are discussed below. The —o option is not usually used. See
mount(8) for all possible options.

19.4.1 Mounting CD-ROMs

Put your distribution CD-ROM disk into your CD-ROM drive and mount it with

1ls /mnt/cdrom
mount -t is09660 -o ro /dev/hdb /mnt/cdrom

(Your CD-ROM might be /dev/hdc or /dev/hdd, however—in this case you should
make a soft link /dev/cdrom pointing to the correct device. Your distribution may
also prefer /cdrom over /mnt/cdrom.) Now cd to your /mnt /cdrom directory. You

163

19.4. Device Mounting 19. Partitions, File Systems, Formatting, Mounting

will notice that it is no longer empty, but “contains” the CD-ROM'’s files. What is
happening is that the kernel is redirecting all lookups from the directory /mnt/cdrom
to read from the CD-ROM disk. You can browse around these files as though they were
already copied onto your hard drive. This is one of the things that makes UNIX cool.

When you are finished with the CD-ROM unmount it with

umount /dev/hdb
eject /dev/hdb

19.4.2 Mounting floppy disks

Instead of using mtools, you could mount the floppy disk with

mkdir /mnt/floppy
mount -t vfat /dev/fd0 /mnt/floppy

or, for older MS-DOS floppies, use

mkdir /mnt/floppy
mount -t msdos /dev/fd0 /mnt/floppy

Before you eject the floppy, it is essential to run

[umount /dev/£d0]

in order that cached data is committed to the disk. Failing to umount a floppy before
ejecting will probably corrupt its file system.

19.4.3 Mounting Windows and NT partitions

Mounting a Windows partition can also be done with the vfat file system, and NT
partitions (read-only) with the nt £'s file system. VAT32 is also supported (and autode-
tected). For example,

mkdir /windows

mount -t vfat /dev/hdal /windows
mkdir /nt

mount -t ntfs /dev/hda2 /nt

164

19. Partitions, File Systems, Formatting, Mounting 19.5. File System Repair: fsck

19.5 File System Repair: £sck

fsck stands for file system check. f£sck scans the file system, reporting and fixing er-
rors. Errors would normally occur only if the kernel halted before the file system was
umounted. In this case, it may have been in the middle of a write operation which left
the file system in an incoherent state. This usually happens because of a power failure.
The file system is then said to be unclean.

fsck is used as follows:

[fsck [-V] [-a] [-t <fstype>] <device>]

-V means to produce verbose output. -a means to check the file system
noninteractively—meaning to not ask the user before trying to make any repairs.

Here is what you would normally do with LINUX{} if you don’t know a whole
lot about the ext 2 file system:

[fsck -a -t ext2 /dev/hdal]

although you can omit the —t option because LINUX{} autodetects the file system.
Note that you should not run £sck on a mounted file system. In exceptional circum-
stances it is permissible to run £sck on a file system that has been mounted read-only.

fsck actually just runs a program specific to that file system. In the case of
ext2, the command e2fsck (also known as £sck.ext?2) is run. See e2fsck(8) for
exhaustive details.

During an interactive check (without the -a option, or with the —r option—
the default), various questions may be asked of you, as regards fixing and sav-
ing things. It's best to save stuff if you aren’t sure; it will be placed in the
lost+found directory below the root directory of the particular device. In the
example system further below, there would exist the directories /lost+found,
/home/lost+found, /var/lost+found, /usr/lost+found, etc. After doing a
check on, say, /dev/hda9, list the /home/lost+found directory and delete what
you think you don’t need. These will usually be temporary files and log files (files that
change often). It’s rare to lose important files because of an unclean shutdown.

19.6 File System Errors on Boot

Just read Section 19.5 again and run fsck on the file system that reported the error.

165

19.7. Automatic Mounts: fstab 19. Partitions, File Systems, Formatting, Mounting

19.7 Automatic Mounts: £stab

Manual mounts are explained above for new and removable disks. It is, of course nec-
essary for file systems to be automatically mounted at boot time. What gets mounted
and how is specified in the configuration file /etc/fstab.

/etc/fstab will usually look something like this for the disk we partitioned
above:

/dev/hdal / ext?2 defaults 11
/dev/hda6 /tmp ext2 defaults 12
/dev/hda’7 /var ext2 defaults 12
/dev/hda8 /usr ext2 defaults 12
/dev/hda9 /home ext2 defaults 12
/dev/hda$s swap swap defaults 00
/dev/£d0 /mnt /floppy auto noauto,user 00
/dev/cdrom /mnt /cdrom 1509660 noauto,ro,user 0 0
none /proc proc defaults 00
none /dev/pts devpts mode=0622 00

For the moment we are interested in the first six lines only. The first three fields
(columns) dictate the partition, the directory where it is to be mounted, and the file
system type, respectively. The fourth field gives options (the —o option to mount).

The fifth field tells whether the file system contains real files. The field is used by
the dump command to decide if it should be backed up. This is not commonly used.

The last field tells the order in which an f£sck should be done on the partitions.
The / partition should come first with a 1, and all other partitions should come directly
after. Placing 2’s everywhere else ensures that partitions on different disks can be
checked in parallel, which speeds things up slightly at boot time.

The floppy and cdrom entries enable you to use an abbreviated form of the
mount command. mount will just look up the corresponding directory and file system
type from /etc/fstab. Try

[mount /dev/cdrom J

These entries also have the user option, which allows ordinary users to mount these
devices. The ro option once again tells to mount the CD-ROM read only, and the
noauto command tells mount not to mount these file systems at boot time. (More
comes further below.)

proc is a kernel information database that looks like a file system. For example
/proc/cpuinfo is not any kind of file that actually exists on a disk somewhere. Try
cat /proc/cpuinfo.

Many programs use /proc to get dynamic information on the status and config-
uration of your machine. More on this is discussed in Section 42.4.

166

19. Partitions, File Systems, Formatting, Mounting 19.8. Manually Mounting /proc

The devpts file system is another pseudo file system that generates terminal
master/slave pairs for programs. This is mostly of concern to developers.

19.8 Manually Mounting /proc

You can mount the proc file system with the command

[mount -t proc /proc /proc]

This is an exception to the normal mount usage. Note that all common LINUX{) in-
stallations require /proc to be mounted at boot time. The only times you will need
this command are for manual startup or when doing a chroot. (See page 178.)

19.9 RAM and Loopback Devices

A RAM device is a block device that can be used as a disk but really points to a physical
area of RAM.

A loopback device is a block device that can be used as a disk but really points to
an ordinary file somewhere.

If your imagination isn’t already running wild, consider creating a floppy disk
with file system, files and all, without actually having a floppy disk, and being able to
dump this creation to floppy at any time with dd. You can also have a whole other
LINUX{) system inside a 500 MB file on a Windows partition and boot into it—thus
obviating having to repartition a Windows machine just to run LINUX{}. All this can
be done with loopback and RAM devices.

19.9.1 Formatting a floppy inside a file

The operations are quite trivial. To create an ext 2 floppy inside a 1440 KB file, run:

dd if=/dev/zero of="/file-floppy count=1440 bs=1024
losetup /dev/loop0 ~/file-floppy

mke2fs /dev/loop0

mkdir ~/mnt

mount /dev/loop0 ~/mnt

ls -al “/mnt

When you are finished copying the files that you want into ~/mnt, merely run

167

19.10. Remounting 19. Partitions, File Systems, Formatting, Mounting

umount ~/mnt
losetup -d /dev/loopO

To dump the file system to a floppy, run

[dd if="/file-floppy of=/dev/fd0 count=1440 bs=1024 :

A similar procedure for RAM devices is

dd if=/dev/zero of=/dev/ram0 count=1440 bs=1024
mke2fs /dev/ram0

mkdir ~/mnt

mount /dev/ram0 ~/mnt

ls —al “/mnt

When you are finished copying the files that you want into ~/mnt, merely run

[umount ~/mnt

To dump the file system to a floppy or file, respectively, run:

dd if=/dev/ram0 of=/dev/fd0 count=1440 bs=1024
dd if=/dev/ram0 of="/file-floppy count=1440 bs=1024

19.9.2 CD-ROM files

Another trick is to move your CD-ROM to a file for high-speed access. Here, we use a
shortcut instead of the 1osetup command:

dd if=/dev/cdrom of=some_name.,iso
mount -t 1s09660 -o ro,loop=/dev/loop0 some_name.iso /cdrom

19.10 Remounting from Read-Only to Read-Write

A file system that is already mounted as read-only can be remounted as read-write,
for example, with

168

19. Partitions, File Systems, Formatting, Mounting 19.11. Disk sync

[mount -0 rw, remount /dev/hdal / J

This command is useful when you log in in single-user mode with no write access to
your root partition.

19.11 Disk sync

The kernel caches write operations in memory for performance reasons. These flush
(physically commit to the magnetic media) every so often, but you sometimes want to
force a flush. This is done simply with

=)

169

19.11. Disk sync 19. Partitions, File Systems, Formatting, Mounting

170

Chapter 20

Advanced Shell Scripting

This chapter completes our discussion of sh shell scripting begun in Chapter 7 and
expanded on in Chapter 9. These three chapters represent almost everything you can
do with the bash shell.

20.1 Lists of Commands

The special operator && and | | can be used to execute functions in sequence. For
instance:

[qrep " “harry:’ /etc/passwd || useradd harry]

The | | means to only execute the second command if the first command returns an
error. In the above case, grep will return an exit code of 1 if harry is not in the
/etc/passwd file, causing useradd to be executed.

An alternate representation is

[grep -v ' “harry:’ /etc/passwd && useradd harry :

where the —v option inverts the sense of matching of grep. && has the opposite mean-
ing to | |, that is, to execute the second command only if the first succeeds.

Adept script writers often string together many commands to create the most
succinct representation of an operation:

grep -v !’ “harry:’ /etc/passwd && useradd harry || \
echo "‘date'‘: useradd failed" >> /var/log/my_special_log

171

20.2. Special Parameters: $2, $*,... 20. Advanced Shell Scripting

20.2 Special Parameters: $°?, $*,...

An ordinary variable can be expanded with $VARNAME. Commonly used variables
like PATH and special variables like PWD and RANDOM were covered in Chapter 9. Fur-
ther special expansions are documented in the following section, quoted verbatim from
the bash man page (the footnotes are mine).!

Special Parameters

The shell treats several parameters specially. These parameters may only be
referenced; assignment to them is not allowed.

$* Expands to the positional parameters (i.e., the command-line arguments passed
to the shell script, with $1 being the first argument, $2 the second etc.), starting
from one. When the expansion occurs within double quotes, it expands to a
single word with the value of each parameter separated by the first character
of the IFS special variable. That is, "$*” is equivalent to "$1c$2c...”, where
¢ is the first character of the value of the IFS variable. If IFS is unset, the
parameters are separated by spaces. If IFS is null, the parameters are joined
without intervening separators.

$@ Expands to the positional parameters, starting from one. When the expansion
occurs within double quotes, each parameter expands to a separate word.
That is, "$@” is equivalent to "$1” ”$2” ... When there are no positional pa-
rameters, “$@” and $@ expand to nothing (i.e., they are removed). ~Hint: this
is very useful for writing wrapper shell scripts that just add one argument.

$# Expands to the number of positional parameters in decimal (i.e. the number of
command-line arguments).

$? Expands to the status of the most recently executed foreground pipeline. \Le.,
the exit code of the last command.\

$- Expands to the current option flags as specified upon invocation, by the set
builtin command, or those set by the shell itself (such as the -i option).

$$ Expands to the process ID of the shell. In a () subshell, it expands to the process
ID of the current shell, not the subshell.

$! Expands to the process ID of the most recently executed background (asyn-
chronous) command. “le., after executing a background command with com-
mand &, the variable $! will give its process ID’\

$0 Expands to the name of the shell or shell script. This is set at shell initialization.
If bash is invoked with a file of commands, $0 is set to the name of that file.
If bash is started with the -c option, then $0 is set to the first argument after
the string to be executed, if one is present. Otherwise, it is set to the file name
used to invoke bash, as given by argument zero. “yNote that basename $0 is a
useful way to get the name of the current command without the leading path\

IThanks to Brian Fox and Chet Ramey for this material.

172

20. Advanced Shell Scripting 20.3. Expansion

$- At shell startup, set to the absolute file name of the shell or shell script being
executed as passed in the argument list. Subsequently, expands to the last
argument to the previous command, after expansion. Also set to the full file
name of each command executed and placed in the environment exported to
that command. When checking mail, this parameter holds the name of the
mail file currently being checked.

20.3 Expansion

Expansion refers to the way bash modifies the command-line before executing it. bash
performs several textual modifications to the command-line, proceeding in the follow-
ing order:

Brace expansion We have already shown how you can use, for example, the shorthand
touch file_{one,two,three}.txt to create multiple files file_one.txt,
file_two.txt, and file_three.txt. This is known as brace expansion and
occurs before any other kind of modification to the command-line.

Tilde expansion The special character ~ is replaced with the full path contained in the
HOME environment variable or the home directory of the users login (if $HOME is
null). "+ is replaced with the current working directory and ~ - is replaced with
the most recent previous working directory. The last two are rarely used.

Parameter expansion This refers to expanding anything that begins with a $. Note
that VAR and $ { VAR} do exactly the same thing, except in the latter case, VAR
can contain non-“whole word” characters that would normally confuse bash.

There are several parameter expansion tricks that you can use to do string ma-

nipulation. Most shell programmers never bother with these, probably because
they are not well supported by other UNIX systems.

${VAR:-default} This will resultin $VAR unless VAR is unset or null, in which
case it will result in default.

${VAR:=default} Same as previous except that default is also assigned to VAR if
it is empty.

${VAR:-default} This will result in an empty string if VAR is unset or null;
otherwise it will result in default. This is the opposite behavior of $ { VAR : -
default}.

${VAR: ?message} Thiswill resultin $VAR unless VAR is unset or null, in which
case an error message containing message is displayed.

${VAR:offset} or ${VAR:n:I1} This produces the nth character of $VAR and
then the following I characters. If [is not present, then all characters to the

right of the nth character are produced. This is useful for splitting up strings.
Try:

173

20.3. Expansion 20. Advanced Shell Scripting

TEXT=scripting_for_phun
echo ${TEXT:10:3}
echo ${TEXT:10}

${#VAR} Gives the length of $VAR.
${!PRE*} Gives a list of all variables whose names begin with PRE.

$ {VAR#pattern} $VAR is returned with the glob expression pattern removed
from the leading part of the string. For instance, $ { TEXT#scr} in the above
example will return ripting_for_phun.

$ { VAR##pattern} This is the same as the previous expansion except that if pat-
tern contains wild cards, then it will try to match the maximum length of
characters.

$ {VARS%pattern} The same as ${VAR#pattern} except that characters are re-
moved from the trailing part of the string.

$ {VAR%%pattern} The same as $ { VAR##pattern} except that characters are re-
moved from the trailing part of the string.

${VAR/search/replace} $VAR is returned with the first occurrence of the string
search replaced with replace.

${VAR/#search/replace} Same as $ { VAR/search/replace} except that the match
is attempted from the leading part of $VAR.

${VAR/%search/replace} Sameas $ { VAR/search/replace} except that the match
is attempted at the trailing part of $VAR.

${VAR/ /search/replace} Same as ${VAR/search/replace} except that all in-
stances of search are replaced.

Backquote expansion We have already shown backquote expansion in 7.12. Note that
the additional notation $ (command) is equivalent to ‘command * except that es-
capes (i.e., \) are not required for special characters.

Arithmetic expansion We have already shown arithmetic expansion on page 62. Note
that the additional notation $ ((expression)) is equivalent to $ [expression].

Finally The last modifications to the command-line are the splitting of the command-
line into words according to the white space between them. The IFS (Inter-
nal Field Separator) environment variable determines what characters delimit
command-line words (usually whitespace). With the command-line divided into
words, path names are expanded according to glob wild cards. Consult bash(1)
for a comprehensive description of the pattern matching options that most peo-
ple don’t know about.

174

20. Advanced Shell Scripting 20.4. Built-in Commands

20.4 Built-in Commands

Many commands operate some built-in functionality of bash or are especially inter-
preted. These do not invoke an executable off the file system. Some of these were
described in Chapter 7, and a few more are discussed here. For an exhaustive descrip-
tion, consult bash(1).

: A single colon by itself does nothing. It is useful for a “no operation” line such as:

if <command> ; then

else
echo "<command> was unsuccessful"
fi

. filename args ... A single dot is the same as the source command. See below.

alias command=value Creates a pseudonym for a command. Try:

alias necho="echo -n"
necho "hello"

Some distributions alias the mv, cp, and rm commands to the same pseudonym
with the —1 (interactive) option set. This prevents files from being deleted with-
out prompting, but can be irritating for the administrator. See your ~/.bashrc
file for these settings. See also unalias.

unalias command Removes an alias created with alias.
alias -p Prints list of aliases.
eval arg ... Executes args as a line of shell script.

exec command arg ... Begins executing command under the same process ID as the
current script. This is most often used for shell scripts that are mere “wrapper”
scripts for real programs. The wrapper script sets any environment variables and
then execs the real program binary as its last line. exec should never return.

local var=value Assigns a value to a variable. The resulting variable is visible only
within the current function.

pushd directory and popd These two commands are useful for jumping around di-
rectories. pushd can be used instead of cd, but unlike cd, the directory is saved
onto a list of directories. At any time, entering popd returns you to the previous
directory. This is nice for navigation since it keeps a history of wherever you have
been.

175

20.5. Trapping Signals — the t rap Command 20. Advanced Shell Scripting

printf format args ... This is like the C print £ function. It outputs to the terminal
like echo but is useful for more complex formatting of output. See print£(3)
for details and try printf "%10.3e\n" 12 asanexample.

pwd Prints the present working directory.

set Prints the value of all environment variables. See also Section 20.6 on the set
command.

source filename args ... Reads filename into the current current shell environment.
This is useful for executing a shell script when environment variables set by that
script must be preserved.

times Prints the accumulated user and system times for the shell and for processes
run from the shell.

type command Tells whether command is an alias, a built-in or a system executable.

ulimit Prints and sets various user resource limits like memory usage limits and
CPU limits. See bash(1) for details.

umask See Section 14.2.

unset VAR Deletes a variable or environment variable.
unset —f func Deletes a function.

wait Pauses until all background jobs have completed.

wait PID Pauses until background process with process ID of PID has exited, then
returns the exit code of the background process.

wait %job Same with respect to a job spec.

20.5 Trapping Signals — the trap Command

You will often want to make your script perform certain actions in response to a signal.
A list of signals can be found on page 86. To trap a signal, create a function and then
use the t rap command to bind the function to the signal.

#!/bin/sh

function on_hangup ()

{
echo ’"Hangup (SIGHUP) signal recieved’
}

176

10

10

20. Advanced Shell Scripting 20.6. Internal Settings — the set Command

trap on_hangup SIGHUP
while true ; do
sleep 1

done

exit O

Run the above script and then send the process ID the —HUP signal to test it. (See
Section 9.5.)

An important function of a program is to clean up after itself on exit. The special
signal EXIT (not really a signal) executes code on exit of the script:

#!/bin/sh

function on_exit ()

{

echo ’I should remove temp files now’
}
trap on_exit EXIT
while true ; do

sleep 1

done

exit O

Breaking the above program will cause it to print its own epitaph.

If - is given instead of a function name, then the signal is unbound (i.e., set to its
default value).

20.6 Internal Settings — the set Command

The set command can modify certain behavioral settings of the shell. Your current
options can be displayed with echo $-. Various set commands are usually entered
at the top of a script or given as command-line options to bash. Using set +option
instead of set -option disables the option. Here are a few examples:

set —e Exitimmediately if any simple command gives an error.

set -h Cache the location of commands in your PATH. The shell will become con-
fused if binaries are suddenly inserted into the directories of your PATH, perhaps
causingaNo such file or directory error. In this case, disable this option
or restart your shell. This option is enabled by default.

177

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

set —-n Read commands without executing them. This command is useful for syntax
checking.

set —o posix Comply exactly with the POSIX 1003.2 standard.

set —u Report an error when trying to reference a variable that is unset. Usually
bash just fills in an empty string.

set -v Print each line of script as it is executed.
set —-x Display each command expansion as it is executed.

set —-C Do not overwrite existing files when using >. You can use >| to force over-
writing.

20.7 Useful Scripts and Commands

Here is a collection of useful utility scripts that people are always asking for on the
mailing lists. See page 517 for several security check scripts.

20.7.1 chroot

The chroot command makes a process think that its root file system is not actually /.
For example, on one system I have a complete Debian(© installation residing under a
directory, say, /mnt/debian. I can issue the command

[chroot /mnt/debian bash -i]

to run the bash shell interactively, under the root file system /mnt/debian. This
command will hence run the command /mnt/debian/bin/bash -i. All further
commands processed under this shell will have no knowledge of the real root directory,
so I can use my Debian(O installation without having to reboot. All further commands
will effectively behave as though they are inside a separate UNIX machine. One caveat:
you may have to remount your /proc file system inside your chroot’d file system—
see page 167.

This useful for improving security. Insecure network services can change to a
different root directory—any corruption will not affect the real system.

Most rescue disks have a chroot command. After booting the disk, you can
manually mount the file systems on your hard drive, and then issue a chroot to begin
using your machine as usual. Note that the command chroot <new-root> without
arguments invokes a shell by default.

178

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

20.7.2 if conditionals

The if test ... was used to control program flow in Chapter 7. Bash, however, has
a built-in alias for the test function: the left square brace, [.

Using [instead of test adds only elegance:

if [5 -1le 3] ; then
echo 5 < 37
fi

It is important at this point to realize that the i £ command understands nothing
of arithmetic. It merely executes a command test (or in this case [) and tests the exit
code. If the exit code is zero, then the command is considered to be successful and if
proceeds with the body of the i f statement block. The onus is on the test command
to properly evaluate the expression given to it.

if can equally well be used with any command:

if echo "S$PATH" | grep —qwv /usr/local/bin ; then
export PATH="S$PATH:/usr/local/bin"
fi

conditionally adds /usr/local/bin if grep does not find it in your PATH.

20.7.3 patching and diffing

You may often want to find the differences between two files, for example to see what
changes have been made to a file between versions. Or, when a large batch of source
code may have been updated, it is silly to download the entire directory tree if there
have been only a few small changes. You would want a list of alterations instead.

The diff utility dumps the lines that differ between two files. It can be used as
follows:

[diff -u <old-file> <new-file>)

You can also use diff to see difference netween two directory trees. diff recursively
compares all corresponding files:

[diff -u —-recursive —--new-file <old-dir> <new-dir> > <patchffile>.diff]

The output is known as a patch file against a directory tree, that can be used both to see
changes, and to bring <old-dir> up to date with <new-dir>.

Patch files may also end in . patch and are often gz ipped. The patch file can be
applied to <old-dir> with

179

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

cd <old-dir>
patch -pl -s < <patch-file>.diff

which makes <old-dir> identical to <new-dir>. The —pl option strips the leading
directory name from the patch file. The presence of a leading directory name in the
patch file often confuses the pat ch command.

20.7.4 Internet connectivity test

You may want to leave this example until you have covered more networking theory.

The acid test for an Internet connection is a successful DNS query. You can use
ping to test whether a server is up, but some networks filter ICMP messages and ping
does not check that your DNS is working. dig sends a single UDP packet similar to
ping. Unfortunately, it takes rather long to time out, so we fudge in a ki1l after 2
seconds.

This script blocks until it successfully queries a remote name server. Typically,
the next few lines of following script would run fetchmail and a mail server queue
flush, or possibly uucico. Do set the name server IP to something appropriate like
that of your local ISP; and increase the 2 second time out if your name server typically
takes longer to respond.

MY DNS_SERVER=197.22.201,154

while true ; do

(
dig @S$MY_DNS_SERVER netscape.com IN A &

DIG_PID=S!
{ sleep 2 ; kill SDIG_PID ; } &
sleep 1
wait S$DIG_PID
) 2>/dev/null | grep —-q '~ [";]*netscape.com’ && break

done

20.7.5 Recursive grep (search)

Recursively searching through a directory tree can be done easily with the find and
xargs commands. You should consult both these man pages. The following command
pipe searches through the kernel source for anything about the “pcnet” Ethernet card,
printing also the line number:

180

10

15

20

25

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

Efind /usr/src/linux —-follow —-type f | xargs grep —-iHn pcnet]

(You will notice how this command returns rather a lot of data. However, going
through it carefully can be quite instructive.)

Limiting a search to a certain file extension is just another common use of this
pipe sequence.

[find /usr/src/linux -follow —-type f -name ’*,[ch]’ | xargs grep —iHn pcnet]

Note that new versions of grep also have a -r option to recursively search
through directories.

20.7.6 Recursive search and replace

Often you will want to perform a search-and-replace throughout all the files in an
entire source tree. A typical example is the changing of a function call name throughout
lots of C source. The following script is a must for any /usr/local/bin/. Notice the
way it recursively calls itself.

#!/bin/sh

N="‘basename $0°

if ["$1" = "-v"] ; then
VERBOSE="-v"
shift
fi
if ["$3" = "" —o "$1" = "-h" -0 "$1" = "--help"] ; then
echo "$N: Usage"
echo " SN [-h|--help] [-Vv] <regexp-search> \
<regexp-replace> <glob-file>"
echo
exit 0
fi

S="$1" ; shift ; R="$1" ; shift
T=S$Sreplc

if echo "$1" | grep -g / ; then
for i in "$@" ; do
SEARCH=‘echo "$sS" | sed ’'s,/,\\\\/,g’}
REPLACE=‘echo "SR" | sed ’s,/,\\\\/,g""
cat $i | sed "s/$SEARCH/SREPLACE/g" > ST

181

20.7. Useful Scripts and Commands

20. Advanced Shell Scripting

D:"$?ll
if ["$D" = "0"] ; then
if diff -q $T $i >/dev/null ; then

30 else
if ["SVERBOSE" = "-v"] ; then
echo $i
fi
cat ST > $i
35 fi
rm -f $T
fi
done
else
10 find . -type f -name "$1" | xargs $0 SVERBOSE "$S" "S$R"
fi

20.7.7 cut and awk — manipulating text file fields

The cut command is useful for slicing files into fields; try

cut -d: -fl /etc/passwd
cat /etc/passwd | cut -d:

-f1

The awk program is an interpreter for a complete programming language call AWK. A
common use for awk is in field stripping. It is slightly more flexible than cut—

[cat /etc/passwd | awk -F : ' {print S$1}’

—especially where whitespace gets in the way,

1ls —-al |
1ls —-al |

awk ’{print $6 " " 7 " " $g}
awk ' {print $5 " bytes"}’

which isolates the time and size of the file respectively.

Get your nonlocal IP addresses with:

ifconfig | grep ’inet addr:’ | fgrep -v 7127.0.0.7 | \
cut -d: -f2 | cut -4’ ’ -f1l
Reverse an IP address with:
[echo 192.168.3.2 | awk -F . '{print $4 ", " $3 " " $2 " " $1 }’

182

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

Print all common user names (i.e., users with UID values greater than 499 on
RedHat and greater than 999 on Debian(O):

awk -F: ’$3 >= 500 {print $1}’ /etc/passwd
(awk -F: ’$3 >= 1000 {print $1}’ /etc/passwd)

20.7.8 Calculations with be

Scripts can easily use bc to do calculations that expr can’t handle. For example, con-
vert to decimal with

[echo -e ’'ibase=16;FFFF’ | bc]
to binary with
[echo —-e ’"obase=2;12345" | bc j

or work out the SIN of 45 degrees with

echo "scale=10; s(45*$pi/180)" | bc -1

pi=‘echo "scale=10; 4*a(l)" | bc -1" ’

20.7.9 Conversion of graphics formats of many files

The convert program of the ImageMagick package is a command many Windows
users would love. It can easily be used to convert multiple files from one format
to another. Changing a file’s extension can be done with echo filename | sed -
e "s/\.old$/.new/’ *. The convert command does the rest:

for i in *.pcx ; do
CMD="convert -quality 625 $i ‘echo $i | sed -e ’'s/\.pcx$/.png/’ "
Show the command-line to the user:
echo $CMD
Execute the command-line:
eval S$CMD
done

Note that the search-and-replace expansion mechanism could also be used to replace
the extensions: ${1/%.pcx/.png} produces the desired result.

183

20.7. Useful Scripts and Commands 20. Advanced Shell Scripting

Incidentally, the above nicely compresses high-resolution pcx files—possibly the
output of a scanning operation, or a I&IEX compilation into PostScript rendered with
GhostScript (i.e. gs —sDEVICE=pcx256 -sOutputFile=’page%d.pcx’ file.ps).

20.7.10 Securely erasing files

Removing a file with rm only unlinks the file name from the data. The file blocks may
still be on disk, and will only be reclaimed when the file system reuses that data. To
erase a file proper, requires writing random bytes into the disk blocks occupied by the
file. The following overwrites all the files in the current directory:

for 1 in * ; do
dd if=/dev/urandom \
of="35i" \
bs=1024 \
count=‘expr 1 + \
\'stat "$i" | grep ’Size:’ | awk /{print $2}7\' \
/ 1024*
done

You can then remove the files normally with rm.

20.7.11 Persistent background processes

Consider trying to run a process, say, the rxvt terminal, in the background. This can
be done simply with:

X)

However, rxvt still has its output connected to the shell and is a child process of the
shell. When a login shell exits, it may take its child processes with it. rxvt may also die
of its own accord from trying to read or write to a terminal that does not exist without
the parent shell. Now try:

[{ rxvt >/dev/null 2>&1 </dev/null & } &]

This technique is known as forking twice, and redirecting the terminal to dev null. The
shell can know about its child processes but not about the its “grand child” processes.
We have hence create a daemon process proper with the above command.

Now, it is easy to create a daemon process that restarts itself if it happens to die.
Although such functionality is best accomplished within C (which you will get a taste
of in Chapter 22), you can make do with:

184

20. Advanced Shell Scripting 20.7. Useful Scripts and Commands

[{ { while true ; do rxvt ; done ; } >/dev/null 2>&l1 </dev/null & } &]

You will notice the effects of all these tricks with:

[ps awwwxf]

20.7.12 Processing the process list

The following command uses the custom format option of ps to print every conceiv-
able attribute of a process:

pPs —awwwxo %cpu, $mem,alarm,args,blocked,bsdstart,bsdtime, ¢, caught, cmd, comm, \
command, cputime,drs,dsiz, egid, egroup,eip,esp,etime, euid, euser, £, fgid, fgroup, \
flag, flags, fname, fsgid, fsgroup, fsuid, fsuser, fuid, fuser, gid, group, ignored, \
intpri,lim, longtname, lstart,m_drs,m_trs,maj_flt,majflt,min_flt,minflt,ni,\
nice,nwchan, opri, pagein, pcpu, pending, pgid, pgrp, pid, pmem, ppid, pri, rgid, rgroup, \
rss,rssize,rsz, ruid, ruser, s, sess, session, sgi_p,sgi_rss, sgid, sgroup, sid, sig, \
sig_block,sig_catch,sig_ignore,sig_pend, sigcatch, sigignore, sigmask, stackp, \
start, start_stack, start_time, stat, state, stime, suid, suser, svgid, svgroup, svuid, \
svuser, sz, time, timeout, tmout, tname, tpgid, trs,trss,tsiz, tt,tty,tty4,tty8, ucomm, \
uid, uid_hack, uname, user,vsize,vsz, wchan

The output is best piped to a file and viewed with a nonwrapping text editor. More
interestingly, the awk command can print the process ID of a process with

[ps awwx | grep -w "htt[p]d’ | awk ’{print $1}’ j

which prints all the processes having httpd in the command name or command-line.
This filter is useful for killing net scape as follows:

[kill -9 ‘ps awx | grep ’'netsclalpe’ | awk ' {print $1}’'‘ j

(Note that the [a] in the regular expression prevents grep from finding itself in the
process list.)

Other useful ps variations are:

ps awwxf
ps awwxl
PS awwxv
PSS awwxu
PS awwxs

The £ option is most useful for showing parent-child relationships. It stands for forest,
and shows the full process tree. For example, here I am running an X desktop with two
windows:

185

20.8. Shell Initialization 20. Advanced Shell Scripting

PID TTY STAT TIME COMMAND
17 S 0:05 init [5]
27 SW 0:02 [kflushd]
372 SW 0:02 [kupdate]
4 2 SW 0:00 [kpiod]
57 SW 0:01 [kswapd]
6 ? SW< 0:00 [mdrecoveryd]
262 72 S 0:02 syslogd -m O
272 2 S 0:00 klogd
341 72 S 0:00 xinetd -reuse -pidfile /var/run/xinetd.pid
447 2 S 0:00 crond
480 72 S 0:02 xfs —-droppriv -daemon
506 ttyl S 0:00 /sbin/mingetty ttyl
507 tty2 S 0:00 /sbin/mingetty tty2
508 tty3 S 0:00 /sbin/mingetty tty3
509 ? S 0:00 /usr/bin/gdm —-nodaemon
514 7 S 7:04 _ /etc/X11l/X -auth /var/gdm/:0.Xauth :0
515 72 S 0:00 _ /usr/bin/gdm -nodaemon
524 2 S 0:18 _ /opt/icewm/bin/icewm
748 ? S 0:08 _ rxvt -bg black -cr green -fg whi
749 pts/0 S 0:00 | _ bash
5643 pts/0 S 0:09 | _ mc
5645 pts/6 S 0:02 | _ bash -rcfile .bashrc
25292 pts/6 R 0:00 | _ ps awwxf
11780 72 S 0:16 _ /usr/lib/netscape/netscape-commu
11814 » S 0:00 _ (dns helper)
15534 pts/6 S 3:12 cooledit -I /root/.cedit/projects/Rute
15535 pts/6 S 6:03 _ aspell -a -a

The u option shows the useful user format, and the others show virtual memory, signal
and long format.

20.8 Shell Initialization

Here I will briefly discuss what initialization takes place after logging in and how to
modify it.

The interactive shell invoked after 1ogin will be the shell specified in the last
field of the user’s entry in the /etc/passwd file. The login program will invoke
the shell after authenticating the user, placing a - in front of the the command name,
which indicates to the shell that it is a login shell, meaning that it reads and execute
several scripts to initialize the environment. In the case of bash, the files it reads
are: /etc/profile, "/.bashprofile, "/.bash_loginand ~/.profile, in that
order. In addition, an interactive shell that is not a login shell also reads ~/.bashrc.
Note that traditional sh shells only read /etc/profile and "/ .profile.

186

15

20

20. Advanced Shell Scripting 20.9. File Locking

20.8.1 Customizing the PATH and LD_LIBRARY PATH

Administrators can customise things like the environment variables by modifying
these startup scripts. Consider the classic case of an installation tree under /opt/.
Often, a package like /opt/staroffice/ or /opt/oracle/ will require the PATH
and LD_LIBRARY_PATH variables to be adjusted accordingly. In the case of RedHat, a
script,

for i in /opt/*/bin /usr/local/bin ; do
test -d $i || continue
echo $PATH | grep -wg "$i" && continue
PATH=SPATH:S$1i
export PATH

done

if test ‘id -u' -eqg 0 ; then
for i in /opt/*/sbin /usr/local/sbin ; do
test -d $i || continue
echo S$PATH | grep -wg "$i" && continue
PATH=$PATH: $1i
export PATH
done

for i in /opt/*/lib /usr/local/lib ; do
test -d $i || continue
echo $LD_LIBRARY_PATH | grep -wqg "$i" && continue
LD_LIBRARY PATH=$LD_LIBRARY PATH:$i
export LD_LIBRARY_PATH
done

can be placed as /etc/profile.d/my_local.sh with execute permissions. This
will take care of anything installed under /opt/ or /usr/local/. For Debian(©, the
script can be inserted directly into /etc/profile.

Page 235 of Section 23.3 contains details of exactly what LD_LIBRARY_PATH is.

(Unrelated, but you should also edit your /etc/man.config to add man page
paths that appear under all installation trees under /opt/.)

20.9 File Locking

Often, one would like a process to have exclusive access to a file. By this we mean that
only one process can access the file at any one time. Consider a mail folder: if two
processes were to write to the folder simultaneously, it could become corrupted. We

187

10

20.9. File Locking 20. Advanced Shell Scripting

also sometimes want to ensure that a program can never be run twice at the same time;
this insurance is another use for “locking.”

In the case of a mail folder, if the file is being written to, then no other process
should try read it or write to it: and we would like to create a write lock on the file.
However if the file is being read from, no other process should try to write to it: and
we would like to create a read lock on the file. Write locks are sometimes called exclusive
locks; read locks are sometimes called shared locks. Often, exclusive locks are preferred
for simplicity.

Locking can be implemented by simply creating a temporary file to indicate to
other processes to wait before trying some kind of access. UNIX also has some more
sophisticated builtin functions.

20.9.1 Locking a mailbox file

There are currently four methods of file locking. ~ The exim sources seem to indicate thorough
research in this area, so this is what I am going on™\

1. “dot lock” file locking. Here, a temporary file is created with the same name as
the mail folder and the extension .lock added. So long as this file exists, no
program should try to access the folder. This is an exclusive lock only. It is easy
to write a shell script to do this kind of file locking.

2. “MBX” file locking. Similar to 1, but a temporary file is created in /tmp. This is
also an exclusive lock.

3. fentl locking. Databases require areas of a file to be locked. fcntl is a system
call to be used inside C programs.

4. flock file locking. Same as fcnt 1, but locks whole files.

The following shell function does proper mailbox file locking.

function my_lockfile ()
{
TEMPFILE="S$1,$$"
LOCKFILE="S$1,lock"
echo $$ > STEMPFILE 2>/dev/null || {
echo "You don’t have permission to access ‘dirname $TEMPFILE'"
return 1
}
In $TEMPFILE S$LOCKFILE 2>/dev/null && {
rm —-f $STEMPFILE
return O
}
STALE_PID='‘< SLOCKFILE®

188

20

25

30

20. Advanced Shell Scripting 20.9. File Locking

test "SSTALE_PID" -gt "O" >/dev/null || {
return 1

}

kill -0 $STALE_PID 2>/dev/null && {
rm -f $TEMPFILE
return 1

}

rm SLOCKFILE 2>/dev/null && {

echo "Removed stale lock file of process $STALE_PID"

}

In S$STEMPFILE SLOCKFILE 2>/dev/null && {
rm -f $TEMPFILE
return 0

}

rm —-f STEMPFILE

return 1

}

(Note how instead of *cat S$LOCKFILE‘, weuse ‘< SLOCKFILE ‘, which is faster.)

You can include the above function in scripts that need to lock any kind file. Use
the function as follows:

wait for a lock

until my_lockfile /etc/passwd ; do
sleep 1

done

The body of the program might go here
#l...]

Then to remove the lock,
rm -f /etc/passwd.lock

This script is of academic interest only but has a couple of interesting features. Note
how the 1n function is used to ensure “exclusivity.” 1n is one of the few UNIX func-
tions that is atomic, meaning that only one link of the same name can exist, and its
creation excludes the possibility that another program would think that it had success-
fully created the same link. One might naively expect that the program

function my_lockfile ()
{
LOCKFILE="S1.lock"
test -e SLOCKFILE && return 1
touch S$SLOCKFILE
return 0O

}

is sufficient for file locking. However, consider if two programs, running simultane-

189

20.9. File Locking 20. Advanced Shell Scripting

ously, executed line 4 at the same time. Both would think that the lock did not exist
and proceed to line 5. Then both would successfully create the lock file—not what you
wanted.

The kill command is then useful for checking whether a process is running.
Sending the 0 signal does nothing to the process, but the signal fails if the process does
not exist. This technique can be used to remove a lock of a process that died before
removing the lock itself: that is, a stale lock.

20.9.2 Locking over NFS

The preceding script does not work if your file system is mounted over NFS (network
file system—see Chapter 28). This is obvious because the script relies on the PID of the
process, which is not visible across different machines. Not so obvious is that the 1n
function does not work exactly right over NFS—you need to stat the file and actually
check that the link count has increased to 2.

The commands lockfile (from the procmail package) and mutt_dotlock
(from the mut t email reader but perhaps not distributed) do similar file locking. These
commands, however, but do not store the PID in the lock file. Hence it is not possible
to detect a stale lock file. For example, to search your mailbox, you can run:

lockfile /var/spool/mail/mary.lock
grep freddy /var/spool/mail/mary
rm —-f /var/spool/mail/mary.lock

This sequence ensures that you are searching a clean mailbox even if /var is a remote
NFS share.

20.9.3 Directory versus file locking

File locking is a headache for the developer. The problem with UNIX is that whereas
we are intuitively thinking about locking a file, what we really mean is locking a file
name within a directory. File locking per se should only be used on perpetual files, such
as database files. For mailbox and passwd files we need directory locking ~\\My own
term ™, meaning the exclusive access of one process to a particular directory entry. In
my opinion, lack of such a feature is a serious deficiency in UNIX, but because it will
require kernel, NFS, and (possibly) C library extensions, will probably not come into
being any time soon.

190

20. Advanced Shell Scripting 20.9. File Locking

20.9.4 Locking inside C programs

This topic is certainly outside of the scope of this text, except to say that you should
consult the source code of reputable packages rather than invent your own locking
scheme.

191

20.9. File Locking 20. Advanced Shell Scripting

192

Chapter 21

System Services and 1pd — the
Printer Service

This chapter covers a wide range of concepts about the way UNIX services function.

Every function of UNIX is provided by one or another package. For instance, mail
is often handled by the sendmail or other package, web by the apache package.

Here we examine how to obtain, install, and configure a package, using lpd
as an example. You can then apply this knowledge to any other package, and later
chapters assume that you know these concepts. This discussion will also suffice as an
explanation of how to set up and manage printing.

21.1 Using lpr

Printing under UNIX on a properly configured machine is as simple as typing lpr
-Plp <filename> (or cat <filename> | lpr -Plp). The “1p” in —P1lp is the
name of the printer queue on the local machine you would like to print to. You can
omit it if you are printing to the default (i.e., the first listed) queue. A queue belongs to
a physical printer, so users can predict where paper will come spewing out, by what
queue they print to. Queues are conventionally named 1p, 1p0, 1p1, and so on, and
any number of them may have been redirected to any other queue on any other ma-
chine on the network.

The command 1prm removes pending jobs from a print queue; 1pg reports jobs
in progress.

The service that facilitates all this is called 1pd. The 1pr user program makes a
network connection to the 1pd background process, sending it the print job. 1pd then
queues, filters, and feeds the job until it appears in the print tray.

193

21.2. Downloading and Installing 21. System Services and 1pd

Printing typifies the client/server nature of UNIX services. The 1pd background
process is the server and is initiated by the root user. The remaining commands are
client programs, and are run mostly by users.

21.2 Downloading and Installing

The following discussion should relieve the questions of “Where do I get xxx ser-
vice/package?” and “How do I install it?”. Full coverage of package management
comes in Section 24.2, but here you briefly see how to use package managers with
respect to a real system service.

Let us say we know nothing of the service except that it has something to do
with a file /usr/sbin/1pd. First, we use our package managers to find where the file
comes from (Debian(© commands are shown in parentheses):

rpm -gf /usr/sbin/lpd
(dpkg -S /usr/sbin/lpd)

Returns 1pr-0.nn-n (for RedHat 6.2, or LPRng-n.n.nn-n on RedHat 7.0, or 1pr on
Debian(@). On RedHat you may have to try this on a different machine because rpm
does not know about packages that are not installed. Alternatively, if we would like to
see whether a package whose name contains the letters 1pr is installed:

rpm -ga | grep -i lpr
(dpkg -1 "*1lpr*’)

If the package is not present, the package file will be on your CD-ROM and is
easily installable with (RedHat 7.0 and Debian(© in braces):

rpm -1 lpr-0.50-4.1386.rpm
(rpm -i LPRng-3.6.24-2)
(dpkg -i lpr_0.48-1.deb)

(Much more about package management is covered in Chapter 24.)

The list of files which the 1pr package is comprises (easily obtained with rpm -
gl lprordpkg -L lpr)isapproximately as follows:

/etc/init.d/1lpd /usr/share/man/manl/lprm.1l.gz
/etc/cron.weekly/lpr /usr/share/man/man5/printcap.5.9z
/usr/sbin/lpf /usr/share/man/man8/lpc.8.g9z
/usr/sbin/lpc /usr/share/man/man8/1lpd.8.gz
/usr/sbin/lpd /usr/share/man/man8/pac.8.9z
/usr/sbin/pac /usr/share/man/man8/1lpf.8.gz
/usr/bin/lpg /usr/share/doc/lpr/README.Debian

194

10

21. System Services and 1pd 21.3. LPRng vs. Legacy 1pr-0.nn

/usr/bin/lpr /usr/share/doc/lpr/copyright
/usr/bin/lprm /usr/share/doc/lpr/examples/printcap
/usr/bin/lptest /usr/share/doc/lpr/changelog.gz
/usr/share/man/manl/lpr.l.gz /usr/share/doc/lpr/changelog.Debian.gz
/usr/share/man/manl/lptest.l.gz /var/spool/lpd/lp
/usr/share/man/manl/lpg.1l.gz /var/spool/lpd/remote

21.3 LPRng vs. Legacy 1pr-0.nn

(The word legacy with regard to software means outdated, superseded, obsolete, or just
old.)

RedHat 7.0 has now switched to using LPRng rather than the legacy lpr that
Debian(© and other distributions use. LPRng is a more modern and comprehensive
package. It supports the same /etc/printcap file and identical binaries as did the
legacy 1pr on RedHat 6.2. The only differences are in the control files created in your
spool directories, and a different access control mechanism (discussed below). Note
that LPRng has strict permissions requirements on spool directories and is not trivial
to install from source.

21.4 Package Elements

A package’s many files can be loosely grouped into functional elements. In this sec-
tiom, each element will be explained, drawing on the 1pr package as an example.
Refer to the list of files in Section 21.2.

21.4.1 Documentation files

Documentation should be your first and foremost interest. ~Man pages will
not always be the only documentation provided. @ Above we see that lpr
does not install very much into the /usr/share/doc directory. How-
ever, other packages, like rpm -gl apache, reveal a huge user manual (in
/home/httpd/html/manual/ or /var/www/html/manual/), and rpm -gl wu-
ftpd shows lots inside /usr/doc/wu-ftpd-?.7.7.

21.4.2 Web pages, mailing lists, and download points

Every package will probably have a team that maintains it as well as a web page.
In the case of 1pd, however, the code is very old, and the various CD vendors do

195

21.4. Package Elements 21. System Services and 1pd

maintenance on it themselves. A better example is the 1prNG package. Go to The
LPRng Web Page http://www.astart.com/lprng/LPRng.html with your web browser. There
you can see the authors, mailing lists, and points of download. If a particular package
is of much interest to you, then you should become familiar with these resources. Good
web pages will also have additional documentation like troubleshooting guides and
FAQs (Frequently Asked Questions). Some may even have archives of their mailing
lists. Note that some web pages are geared more toward CD vendors who are trying to
create their own distribution and so will not have packages for download that beginner
users can easily install.

21.4.3 User programs

User programs are found in one or another bin directory. In this case, we can see 1pgq,
lpr, lprm, and lptest, as well as their associated man pages.

21.4.4 Daemon and administrator programs

Daemon and administrator command will an sbin directory. In this case we can see
lpc, 1pd, 1pf, and pac, as well as their associated man pages. The only daemon (back-
ground) program is really the 1pd program itself, which is the core of the whole pack-
age.

21.4.5 Configuration files

The file /etc/printcap controls 1pd. Most system services will have a file in /etc.
printcap is a plain text file that 1pd reads on startup. Configuring any service pri-
marily involves editing its configuration file. Several graphical configuration tools are
available that avoid this inconvenience (printtool, which is especially for 1pd, and
linuxconf), but these actually just silently produce the same configuration file.

Because printing is so integral to the system, printcap is not actually provided
by the 1pr package. Trying rpm -gf /etc/printcap gives setup-2.3.4-1, and
dpkg -S /etc/printcap shows it to not be owned (i.e., it is part of the base sys-
tem).

21.4.6 Service initialization files

The filesin /etc/rc.d/init.d/ (or /etc/init.d/) are the startup and shutdown
scripts to run 1pd on boot and shutdown. You can start 1pd yourself on the command-
line with

196

10

21. System Services and 1pd 21.4. Package Elements

[/usr/sbin/lpd]

but it is preferably to use the given script:

/etc/rc.d/init.d/1lpd start
/etc/rc.d/init.d/1lpd stop

(or /etc/init.d/1pd). The script has other uses as well:

/etc/rc.d/init.d/1lpd status
/etc/rc.d/init.d/1pd restart

(or /etc/init.d/1pd).

To make sure that 1pd runs on startup, you can check that it has a symlink under
the appropriate run level. The symlinks can be explained by running

ls -al ‘find /etc -name ' *lpd*’‘
find /etc —-name ’*1lpd*’ -1s

showing,

~rw-r--r-- root root 17335 Sep 25 2000 /etc/lpd.conf
root root 10620 Sep 25 2000 /etc/lpd.perms

root root 2277 sep 25 2000 /etc/rc.d/init.d/lpd

~Iw-r--r--
—IWXI-XI-X

1

1

1
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc0.d/K60lpd —> ,./init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rcl.d/K60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc2.d/S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 24 01:13 /etc/rc.d/rc3.d/S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc4.d/s60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 28 23:13 /etc/rc.d/rc5.d/S60lpd -> ../init.d/lpd
lrwxrwxrwx 1 root root 13 Mar 21 14:03 /etc/rc.d/rc6.d/K60lpd -> ../init.d/lpd

The “3” in rc3.d is the what are interested in. Having S601pd symlinked to 1pd
under rc3.d means that 1pd will be started when the system enters run level 3, which
is the system’s state of usual operation.

Note that under RedHat the command setup has a menu option System Ser-—
vices. The Services list will allow you to manage what services come alive on
boot, thus creating the symlinks automatically. For Debian(©, check the man page for
the update-rc.d command.

More details on bootup are in Chapter 32.

21.4.7 Spool files

Systems services like 1pd, innd, sendmail, and uucp create intermediate files in the
course of processing each request. These are called spool files and are stored some-
where under the /var/spool/ directory, usually to be processed and then deleted in
sequence.

197

21.4. Package Elements 21. System Services and 1pd

1pd has a spool directory /var/spool/lpd, which may have been created on
installation. You can create spool directories for the two printers in the example below,
with

[mkdir -p /var/spool/lpd/lp /var/spool/lpd/lp0]

21.4.8 Log files

UNIX has a strict policy of not reporting error messages to the user interface whenever
there might be no user around to read those messages. Whereas error messages of in-
teractive commands are sent to the terminal screen, error or information messages pro-
duced by non-interactive commands are “logged” to files in the directory /var/log/.

A log file is a plain text file that continually has one-liner status messages ap-
pended to it by a daemon process. The usual directory for log files is /var/log. The
main log files are /var/log/messages and possibly /var/log/syslog. It contains
kernel messages and messages from a few primary services. When a service would
produce large log files (think web access with thousands of hits per hour), the service
would use its own log file. sendmail, for example, uses /var/log/maillog. Actu-
ally, 1pd does not have a log file of its own—one of its failings.

View the system log file with the follow option to tail:

tail -f /var/log/messages
tail -f /var/log/syslog

Restarting the 1pd service gives messages like: \(Not all distributions log this information\

Jun 27 16:06:43 cericon lpd: lpd shutdown succeeded
Jun 27 16:06:45 cericon lpd: lpd startup succeeded

21.4.9 Log file rotation

Log files are rotated daily or weekly by the logrotate package. Its configuration
fileis /etc/logrotate.cont. For each package that happens to produce a log file,
there is an additional configuration file under /etc/logrotate.d/. It is also easy
to write your own—begin by using one of the existing files as an example. Rotation
means that the log file is renamed with a .1 extension and then truncated to zero
length. The service is notified by the 1logrotate program, sometimes with a SIGHUP.
Your /var/log/ may contain a number of old log files named .2, . 3, etc. The point
of log file rotation is to prevent log files from growing indefinitely.

198

21. System Services and 1pd 21.5. The printcap File in Detail

21.4.10 Environment variables

Most user commands of services make use of some environment variables. These can
be defined in your shell startup scripts as usual. For 1lpr, if no printer is specified
on the command-line, the PRINTER environment variable determines the default print
queue. For example, export PRINTER=1pl will force use of the 1p1 print queue.

21.5 The printcap File in Detail

The printcap (printer capabilities) file is similar to (and based on) the termcap (ter-
minal capabilities) file. Configuring a printer means adding or removing text in this file.
printcap contains a list of one-line entries, one for each printer. Lines can be broken
by a \ before the newline. Here is an example of a printcap file for two printers.

1p:\
:sd=/var/spool/lpd/1lp:\
tmx#0:\
:sh:\
:1lp=/dev/1p0:\
:if=/var/spool/lpd/lp/filter:
1p0:\
:sd=/var/spool/lpd/1p0:\
tmx#0:\
:sh:\
:rm=edison:\
:rp=1p3:\
:if=/bin/cat:

Printers are named by the first field: in this case 1p is the first printer and 1p0 the
second printer. Each printer usually refers to a different physical device with its own
queue. The 1p printer should always be listed first and is the default print queue used
when no other is specified. Here, 1p refers to a local printer on the device /dev/1p0
(first parallel port). 1p0 refers to a remote print queue 1p3 on the machine edison.

The printcap has a comprehensive man page. However, the following fields
are most of what you will ever need:

sd Spool directory. This directory contains status and spool files.
mx Maximum file size. In the preceding example, unlimited.

sh Suppress headers. The header is a few informational lines printed before or after
the print job. This option should always be set to off.

1p Line printer device.

199

21.6. PostScript and the Print Filter 21. System Services and 1pd

if Input filter. This is an executable script into which printer data is piped. The output
of this script is fed directly to the printing device or remote machine. This filter
will translate from the application’s output into the printer’s native code.

rm Remote machine. If the printer queue is not local, this is the machine name.

rp Remote printer queue name. The remote machine will have its own printcap file
with possibly several printers defined. This specifies which printer to use.

21.6 PostScript and the Print Filter

On UNIX the standard format for all printing is the PostScript file. PostScript . ps files
are graphics files representing arbitrary scalable text, lines, and images. PostScript
is actually a programming language specifically designed to draw things on a page;
hence, . ps files are really PostScript programs. The last line in any PostScript program
is always showpage, meaning that all drawing operations are complete and that the
page can be displayed. Hence, it is easy to see the number of pages inside a PostScript
file by grepping for the string showpage.

The procedure for printing on UNIX is to convert whatever you would like to
print into PostScript. PostScript files can be viewed with a PostScript “emulator,” like
the gv (GhostView) program. A program called gs (GhostScript) is the standard utility
for converting the PostScript into a format suitable for your printer. The idea behind
PostScript is that it is a language that can easily be built into any printer. The so-called
“PostScript printer” is one that directly interprets a PostScript file. However, these
printers are relatively expensive, and most printers only understand the lesser PCL
(printer control language) dialect or some other format.

In short, any of the hundreds of different formats of graphics and text have a
utility that will convert a file into PostScript, whereafter gs will convert it for any of
the hundreds of different kinds of printers. \ There are actually many printers not supported by
gs at the time of this writing. This is mainly because manufacturers refuse to release specifications to their
proprietary printer communication protocols\. The print filter is the workhorse of this whole
operation.

Most applications conveniently output PostScript whenever printing. For exam-
ple, netscape’s Print. ait=P | menu selection shows

Print To: |“* Printer] - File

Print Command: | 1pr -Plp

File Name: | feveongs. s

200

21. System Services and 1pd 21.6. PostScript and the Print Filter

which sends PostScript through the stdin of 1pr. All applications without their own
printer drivers will do the same. This means that we can generally rely on the fact
that the print filter will always receive PostScript. gs, on the other hand, can convert
PostScript for any printer, so all that remains is to determine its command-line options.

If you have chosen “Print To: File,” then you can view the resulting output with
the gv program. Try gv netscape.ps, which shows a print preview. On UNIX, most
desktop applications do not have their own preview facility because the PostScript
printer itself is emulated by gv.

Note that filter programs should not be used with remote filters; remote printer
queues can send their PostScript files “as is” with : 1f=/bin/cat: (asin the example
printcap file above). This way, the machine connected to the device need be the only
one especially configured for it.

The filter program we are going to use for the local print queue will be a shell
script /var/spool/lpd/1lp/filter. Create the filter with

touch /var/spool/lpd/lp/filter
chmod a+x /var/spool/lpd/lp/filter

then edit it so that it looks like

#!/bin/bash
cat | gs —-sDEVICE=ljet4 -sOutputFile=- -sPAPERSIZE=a4 -r600x600 -g -
exit O

The -sDEVICE option describes the printer, in this example a Hewlett Packard
LaserJet 1100. Many printers have similar or compatible formats; hence, there are far
fewer DEVICE's than different makes of printers. To get a full list of supported devices,
use gs —h and also consult one of the following files (depending on your distribution):

/usr/doc/ghostscript-?.??/devices.txt
/usr/share/doc/ghostscript-?.7?/Devices.htm
/usr/share/doc/gs/devices.txt.gz

The —sOutputFile=- sets to write to stdout (as required for a filter). The -
sPAPERSIZE can be set to one of 11x17, a3, a4, a5, b3, b4, b5, halfletter,
ledger, legal, letter, note, and others listed in the man page. You can also use
-g<width>x<height> to set the exact page size in pixels. ~-r600x600 sets the reso-
lution, in this case, 600 dpi (dots per inch). —q means to set quiet mode, suppressing
any informational messages that would otherwise corrupt the PostScript output, and
- means to read from stdin and not from a file.

Our printer configuration is now complete. What remains is to start 1pd and test
print. You can do that on the command-line with the enscript package. enscript
is a program to convert plain text files into nicely formatted PostScript pages. The man
page for enscript shows an enormous number of options, but we can simply try:

201

21.7. Access Control 21. System Services and 1pd

[echo hello | enscript -p - | lpr J

21.7 Access Control

You should be very careful about running 1pd on any machine that is exposed to the
Internet. 1pd has had numerous security alerts \ See Chapter 44X and should really
only be used within a trusted LAN.

To prevent any remote machine from using your printer, 1pd first looks in the
file /etc/hosts.equiv. This is a simple list of all machines allowed to print to your
printers. My own file looks like this:

192.168.3.8
192.168.3.9
192.168.3.10
192.,168.3.11

The file /etc/hosts. 1pd does the same but doesn’t give administrative control by
those machines to the print queues. Note that other services, like sshd and rshd (or
in.rshd), also check the hosts.equiv file and consider any machine listed to be
equivalent. This means that they are completed trusted and so rshd will not request
user logins between machines to be authenticated. This behavior is hence a grave
security concern.

LPRng on RedHat 7.0 has a different access control facility. It can arbitrarily limit
access in a variety of ways, depending on the remote user and the action (such as whois
allowed to manipulate queues). The file /et c/1pd.perms contains the configuration.
The file format is simple, although LPRng’s capabilities are rather involved—to make
a long story short, the equivalent hosts.equiv becomes in 1pd.perms

ACCEPT SERVICE=* REMOTEIP=192,168.3.8
ACCEPT SERVICE=* REMOTEIP=192,168.3.9
ACCEPT SERVICE=* REMOTEIP=192,168.3.10
ACCEPT SERVICE=* REMOTEIP=192,168.3.11

DEFAULT REJECT

Large organizations with many untrusted users should look more closely at the
LPRng-HOWTO in /usr/share/doc/LPRng-n.n.nn. It explains how to limit access
in more complicated ways.

202

21. System Services and 1pd 21.8. Printing Troubleshooting

21.8 Printing Troubleshooting

Here is a convenient order for checking what is not working.

1.

O ok LD

10.

11.

Check that your printer is plugged in and working. All printers have a way of
printing a test page. Read your printer manual to find out how.

Check your printer cable.
Check your CMOS settings for your parallel port.
Check your printer cable.

Try echo hello > /dev/1p0 to check that the port is operating. The printer
should do something to signify that data has at least been received. Chapter 42
explains how to install your parallel port kernel module.

Use the 1pc program to query the 1pd daemon. Try help, then status 1p,
and so on.

Check that there is enough space in your /var and /tmp devices for any inter-
medjiate files needed by the print filter. A large print job may require hundreds of
megabytes. 1pd may not give any kind of error for a print filter failure: the print
job may just disappear into nowhere. If you are using legacy 1pr, then complain
to your distribution vendor about your print filter not properly logging to a file.

For legacy lpr, stop 1pd and remove all of 1pd’s runtime At or pertaining to the
program being in a running state™\ files from /var/spool/1lpd and from any of its
subdirectories. (New LPRng should never require this step.) The unwanted files
are .seq, lock, status, 1pd. lock, and any left over spool files that failed to
disappear with 1prm (these files are recognizable by long file names with a host
name and random key embedded in the file name). Then, restart 1pd.

For remote queues, check that you can do forward and reverse lookups on both
machines of both machine’s host names and IP address. If not, you may get Host
name for your address (ipaddr) unknown error messages when trying an
1pg. Test with the command host <ip-address>andalsohost <machine-
name> on both machines. If any of these do not work, add entries for both ma-
chines in /etc/hosts from the example on page 278. Note that the host com-
mand may be ignorant of the file /et c/host s and may still fail. Chapter 40 will
explain name lookup configuration.

Run your print filter manually to check that it does, in fact, pro-
duce the correct output. For example, echo hello | enscript -p - |
/var/spool/lpd/lp/filter > /dev/1lpO.

Legacy 1pd is a bit of a quirky package—meditate.

203

21.9. Useful Programs 21. System Services and 1pd

21.9 Useful Programs

21.9.1 printtool

printtool is a graphical printer setup program that helps you very quickly set up
1pd. It immediately generates a printcap file and magic filter, and you need not
know anything about 1pd configuration.

21.9.2 apsfilter

apsfilter stands for any to PostScript filter. The setup described above requires ev-
erything be converted to PostScript before printing, but a filter could foreseeably use
the file command to determine the type of data coming in and then invoke a program
to convert it to PostScript before piping it through gs. This would enable JPEG, GIF,
plain text, DVI files, or even gzipped HTML to be printed directly, since PostScript
converters have been written for each of these. apsfilter is one of a few such filters,
which are generally called mag ic ﬁlters . \(This is because the £ile command uses magic numbers.
See page 37\

I personally find this feature a gimmick rather than a genuine utility, since most
of the time you want to lay out the graphical object on a page before printing, which
requires you to preview it, and hence convert it to PostScript manually. For most situ-
ations, the straight PostScript filter above will work adequately, provided users know
to use enscript instead of 1pr when printing plain text.

21.9.3 mpage

mpage is a useful utility for saving the trees. It resizes PostScript input so that two,
four or eight pages fit on one. Change your print filter to:

#!/bin/bash
cat | mpage -4 | gs -sDEVICE=ljet4 -sOutputFile=- -sPAPERSIZE=a4 -r600x600 —-g -
exit 0

2194 psutils

The package psutils contains a variety of command-line PostScript manipulation
programs—a must for anyone doing fancy things with filters.

204

21. System Services and 1pd 21.10. Printing to Things Besides Printers

21.10 Printing to Things Besides Printers

The printcap allows anything to be specified as the printer device. If we set it to
/dev/null and let our filter force the output to an alternative device, then we can use
1pd to redirect “print” jobs to any kind of service imaginable.

Here, my_filter.sh is a script that might send the print job through an SMB
(Windows NT) print share (using smbclient—see Chapter 39), to a printer previewer,
or to a script that emails the job somewhere.

1pl:\
:sd=/var/spool/lpd/lpl:\
cmx#0:\
:sh:\
:1lp=/dev/null:\
:if=/usr/local/bin/my_filter.sh:

We see a specific example of redirecting print jobs to a fax machine in Chapter 33.

205

21.10. Printing to Things Besides Printers 21. System Services and 1pd

206

Chapter 22

Trivial Introduction to C

mmmmmmmmmm
cccccc

system is written in C, this language is the first choice for writing any kind of applica-
tion that has to communicate efficiently with the operating system.

Many people who don’t program very well in C think of C as an arbitrary lan-
guage out of many. This point should be made at once: C is the fundamental basis of all
computing in the world today. UNIX, Microsoft Windows, office suites, web browsers
and device drivers are all written in C. Ninety-nine percent of your time spent at a
computer is probably spent using an application written in C. About 70% of all “open
source” software is written in C, and the remaining 30% written in languages whose
compilers or interpreters are written in C. \(C++ is also quite popular. It is, however, not as
fundamental to computing, although it is more suitable in many situationsX

Further, there is no replacement for C. Since it fulfills its purpose almost flaw-
lessly, there will never be a need to replace it. Other languages may fulfill other purposes,
but C fulfills its purpose most adequately. For instance, all future operating systems will
probably be written in C for a long time to come.

It is for these reasons that your knowledge of UNIX will never be complete until
you can program in C. On the other hand, just because you can program in C does
not mean that you should. Good C programming is a fine art which many veteran C
programmers never manage to master, even after many years. It is essential to join a Free
software project to properly master an effective style of C development.

207

22.1. C Fundamentals 22. Trivial Introduction to C

22.1 C Fundamentals

We start with a simple C program and then add fundamental elements to it. Before
going too far, you may wish to review bash functions in Section 7.7.

22.1.1 The simplest C program

A simple C program is:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
printf ("Hello World!\n");
return 3;

Save this program in a file hello.c. We will now compile the program. Compiling
is the process of turning C code into assembler instructions. Assembler instructions are the program code
that your 80786/SPARC/RS6000 CPU understands directly. The resulting binary executable is fast because
it is executed natively by your processor—it is the very chip that you see on your motherboard that does
fetch Hello byte for byte from memory and executes each instruction. This is what is meant by million
instructions per second (MIPS). The megahertz of the machine quoted by hardware vendors is very roughly
the number of MIPS. Interpreted languages (like shell scripts) are much slower because the code itself is
written in something not understandable to the CPU. The /bin/bash program has to interpret the shell
program. /bin/bash itself is written in C, but the overhead of interpretation makes scripting languages
many orders of magnitude slower than compiled languages. Shell scripts do not need to be compiled\
Run the command

[qcc -Wall -o hello hello.c]

The -0 hello option tells gcc \¢GNU C Compiler. cc on other UNIX systems\ to produce
the binary file hello instead of the default binary file named a. out. “Called a. out for
historical reasons™\. The ~Wall option means to report all Warnings during the compila-
tion. This is not strictly necessary but is most helpful for correcting possible errors in
your programs. More compiler options are discussed on page 239.

Then, run the program with
[./hello]

Previously you should have familiarized yourself with bash functions. In C all
code is inside a function. The first function to be called (by the operating system) is the
main function.

208

10

22. Trivial Introduction to C 22.1. C Fundamentals

Type echo $7? to see the return code of the program. You will see it is 3, the
return value of the main function.

Other things to note are the " on either side of the string to be printed. Quotes are
required around string literals. Inside a string literal, the \n escape sequence indicates a
newline character. ascii(7) shows some other escape sequences. You can also see a
proliferation of ; everywhere in a C program. Every statement in C is terminated by a
; unlike statements in shell scripts where a ; is optional.

Now try:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])

{
printf ("number %d, number %d\n", 1 + 2, 10);
exit (3);

}

printf can be thought of as the command to send output to the terminal. It is also
what is known as a standard C library function. In other words, it is specified that a C
implementation should always have the print f function and that it should behave in
a certain way.

The %d specifies that a decimal should go in at that point in the text. The num-
ber to be substituted will be the first argument to the print £ function after the string
literal—that is, the 1 + 2. The next %$d is substituted with the second argument—that
is, the 10. The %d is known as a format specifier. It essentially converts an integer number
into a decimal representation. See print £(3) for more details.

22.1.2 Variables and types

With bash, you could use a variable anywhere, anytime, and the variable would just
be blank if it had never been assigned a value. In C, however, you have to explicitly
tell the compiler what variables you are going to need before each block of code. You
do this with a variable declaration:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
int x;
int y;
x = 10;
y = 2:
printf ("number $%$d, number %d\n", 1 + vy, x);
exit (3);

209

22.1. C Fundamentals 22. Trivial Introduction to C

L J
The int x is a variable declaration. It tells the program to reserve space for one
integer variable that it will later refer to as x. int is the type of the variable. x =

10 assigned a value of 10 to the variable. There are types for each kind of number you
would like to work with, and format specifiers to convert them for printing:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
5] 4

char aj;

short b;

int c;

long d;

10 float e;

double f;

long double g;

= rAr,.

= 10;

= 10000000;

10000000;

= 3.14159;

= 10e300;

= 10e300;

20 printf ("%c, %hd, %d, %$1d, %f, %f, $Lf\n", a, b, ¢, d, e, £, g9);
exit (3);

15

Q 0 Q Q09
Il

You will notice that $f is used for both floats and doubles. The reason is
that a float is always converted to a double before an operation like this. Also try
replacing % f with %$e to print in exponential notation—that is, less significant digits.

22.1.3 Functions

Functions are implemented as follows:

#include <stdlib.h>
#include <stdio.h>

void mutiply_and_print (int x, int y)
5 (4

printf ("$d * %d = %d\n", x, y, x * y);
}

int main (int argc, char *argv[])
10 {

mutiply_and_print (30, 5);

210

22. Trivial Introduction to C 22.1. C Fundamentals

mutiply_and_print (12, 3);
exit (3);

Here we have a non-main function called by the main function. The function is
first declared with

[void mutiply_and_print (int x, int y)]

This declaration states the return value of the function (void for no return value),
the function name (mutiply_and_print), and then the arguments that are going to be
passed to the function. The numbers passed to the function are given their own names,
x and y, and are converted to the type of x and y before being passed to the function—
in this case, int and int. The actual C code that comprises the function goes between
curly braces { and }.

In other words, the above function is equivalent to:

void mutiply_and_print ()
{
int x;
int y;
5 x <first-number-passed>
y = <second—-number-passed>
printf ("%d * %d = %d\n", x, y, x * y);

22.1.4 for,while, if, and switch statements

As with shell scripting, we have the for, while, and if statements:

#include <stdlib.h>
#include <stdio.h>
int main (int argc, char *argv[])
5 11
int x;
x 10;
10 if (x == 10) {
printf ("x is exactly 10\n");
X++;
} else if (x == 20) {
printf ("x is equal to 20\n");
15 } else {

211

20

25

30

35

40

45

22.1. C Fundamentals 22. Trivial Introduction to C

printf ("No, x is not equal to 10 or 20\n");
}

if (x > 10) {
printf ("Yes, x is more than 10\n");

}

while (x > 0) {
printf ("x is %d\n", x);
x =x - 1;

}

for (x = 0; x < 10; =x++) {
printf ("x is %d\n", x);

}

switch (x) |

case 9:
printf ("x is nine\n");
break;

case 10:
printf ("x is ten\n");
break;

case 11:
printf ("x is eleven\n");
break;

default:
printf ("x is huh?\n");
break;

}

return 0;

}

It is easy to see the format that these statements take, although they are vastly different
from shell scripts. C code works in statement blocks between curly braces, in the same
way that shell scripts have do’s and done’s.

Note that with most programming languages when we want to add 1 to a vari-
able we have to write, say, x = x + 1. In C, the abbreviation x++ is used, meaning
to increment a variable by 1.

The for loop takes three statements between (...): a statement to start things
off, a comparison, and a statement to be executed on each completion of the statement
block. The statement block after the for is repeatedly executed until the comparison
is untrue.

The switch statement is like case in shell scripts. switch considers the argu-
ment inside its (...) and decides which case line to jump to. In this example it will
obviously be printf ("x is ten\n"); because x was 10 when the previous for
loop exited. The break tokens mean that we are through with the switch statement
and that execution should continue from Line 46.

212

10

15

10

15

22. Trivial Introduction to C 22.1. C Fundamentals

Note that in C the comparison == is used instead of =. The symbol = means to
assign a value to a variable, whereas == is an equality operator.

22.1.5 Strings, arrays, and memory allocation

You can define a list of numbers with:

[int y[10];]

This list is called an array:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])

{

int x;
int y[10];
for (x = 0; x < 10; x++) {
yix] = x * 2;
}
for (x = 0; x < 10; x++) {
printf ("item %d is %d\n", x, y[x]);

}

return 0;

If an array is of type character, then it is called a string:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])

{

int x;

char y[11];

for (x = 0; x < 10; =x++) {
y[x] = 65 + x * 2;

}

for (x = 0; x < 10; =x++) {
printf ("item %d is %d\n", x, yI[x]);

}

y[10] = 0;

printf ("string is %s\n", y);

return 0;

}

Note that a string has to be null-terminated. This means that the last character must be
a zero. The code y[10] = O sets the 11th item in the array to zero. This also means
that strings need to be one char longer than you would think.

213

10

15

5

22.1. C Fundamentals 22. Trivial Introduction to C

(Note that the first item in the array is y [0], not y [1], as with some other pro-
gramming languages.)

In the preceding example, the line char y[11] reserved 11 bytes for the string.
But what if you want a string of 100,000 bytes? C allows you to request memory from
the kernel. This is called allocate memory. Any non-trivial program will allocate mem-
ory for itself and there is no other way of getting large blocks of memory for your
program to use. Try:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argvl[])
{

int x;

char *y;

y = malloc (11);

printf ("$1d\n", vy);

for (x = 0; x < 10; x++) {

y[ix] = 65 + x * 2;

}

y[10] = 0;

printf ("string is %s\n", vy);

free (y);

return 0;

The declaration char *y means to declare a variable (a number) called y that
points to a memory location. The * (asterisk) in this context means pointer. For example,
if you have a machine with perhaps 256 megabytes of RAM + swap, then y poten-
tially has a range of this much. The numerical value of y is also printed with printf
("$1d\n", y);,butisof nointerest to the programmer.

When you have finished using memory you must give it back to the operating
system by using free. Programs that don’t free all the memory they allocate are said
to leak memory.

Allocating memory often requires you to perform a calculation to determine the
amount of memory required. In the above case we are allocating the space of 11 chars.
Since each char is really a single byte, this presents no problem. But what if we were
allocating 11 ints? An int on a PC is 32 bits—four bytes. To determine the size of a
type, we use the sizeof keyword:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argvl[])
{

int a;

int b;

214

10

15

20

10

15

5

22. Trivial Introduction to C 22.1. C Fundamentals

int c;

int d;

int e;

int f£;

int g;

a = sizeof (char);

b = sizeof (short);
c = sizeof (int);

d = sizeof (long);

e = sizeof (float);
f = sizeof (double);
g = sizeof (long double);

prlntf ("%d, %d, %d, %d, %d, %d, %d\n", a, b, ¢, d, e, £, 9);
return 0;

Here you can see the number of bytes required by all of these types. Now we can easily
allocate arrays of things other than char.

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argvl[])

{

int x;
int *y;
y = malloc (10 * sizeof (int));
printf ("%$1d\n", y);
for (x = 0; x < 10; x++) |
y[ix] = 65 + x * 2;
}
for (x = 0; x < 10; x++) {

printf ("%d\n", y[x]);
}
free (y);
return 0;

On many machines an int is four bytes (32 bits), but you should never assume this.
Always use the sizeof keyword to allocate memory.

22.1.6 String operations

C programs probably do more string manipulation than anything else. Here is a pro-
gram that divides a sentence into words:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main (int argc, char *argv[])

215

10

15

20

25

30

35

22.1. C Fundamentals 22. Trivial Introduction to C

int length_of_word;

int i;

int length_of_sentence;

char p[256];

char *qgj;

strcpy (p, "hello there, my name is fred.");
length_of_sentence = strlen (p);

length_of_word = 0;

for (1 = 0; 1 <= length_of_sentence; i++) {
if (pl[i] == "' 7 || i1 == length_of_sentence) {

g = malloc (length_of_word + 1);

if (g == 0) {
perror ("malloc failed");
abort ();

}

strncpy (g, p + i - length_of_word, length_of_word);

gllength_of_word] = 0;
printf ("word: %s\n", q);
free (q);
length_of_word = 0;

} else {

length_of_word = length_of_word + 1;
}
}
return 0;

}

Here we introduce three more standard C library functions. strcpy stands for
stringcopy. It copies bytes from one place to another sequentially, until it reaches a
zero byte (i.e., the end of string). Line 13 of this program copies text into the character
array p, which is called the target of the copy.

strlen stands for stringlength. It determines the length of a string, which is
just a count of the number of characters up to the null character.

We need to loop over the length of the sentence. The variable i indicates the
current position in the sentence.

Line 20 says that if we find a character 32 (denoted by * ’), we know we have
reached a word boundary. We also know that the end of the sentence is a word bound-
ary even though there may not be a space there. The token | | means OR. At this point
we can allocate memory for the current word and copy the word into that memory.
The strncpy function is useful for this. It copies a string, but only up to a limit of
length_of_word characters (the last argument). Like strcpy, the first argument is
the target, and the second argument is the place to copy from.

To calculate the position of the start of the last word, we use p + 1 -
length_of_word. This means that we are adding i to the memory location p and

216

15

20

22. Trivial Introduction to C 22.1. C Fundamentals

then going back length_of_word counts thereby pointing st rncpy to the exact po-
sition.

Finally, we null-terminate the string on Line 27. We can then print g, free the
used memory, and begin with the next word.

For a complete list of string operations, see st ring(3).

22.1.7 File operations

Under most programming languages, file operations involve three steps: opening a file,
reading or writing to the file, and then closing the file. You use the command fopen to
tell the operating system that you are ready to begin working with a file:

The following program opens a file and spits it out on the terminal:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main (int argc, char *argvl[])

{

int ¢;
FILE *f;
f = fopen ("mytest.c", "r");
if (£ == 0) {
perror ("fopen");

return 1;

}

for (;;) |
c = fgetc (f);
if (¢ == -1)
break;
printf ("%c", c);

}
fclose (f);
return 0;

A new typeis presented here: FILE *. Itis a file operations variable that must be
initialized with fopen before it can be used. The fopen function takes two arguments:
the first is the name of the file, and the second is a string explaining how we want to
open the file—in this case "r" means reading from the start of the file. Other options
are "w" for writing and several more described in fopen(3).

If the return value of fopen is zero, it means that fopen has failed. The perror
function then prints a textual error message (for example, No such file or di-
rectory). It is essential to check the return value of all library calls in this way. These
checks will constitute about one third of your C program.

217

5

22.1. C Fundamentals 22. Trivial Introduction to C

The command fgetc gets a character from the file. It retrieves consecutive bytes
from the file until it reaches the end of the file, when it returns a —-1. The break state-
ment says to immediately terminate the for loop, whereupon execution will continue
from line 21. break statements can appear inside while loops as well.

You will notice that the for statement is empty. This is allowable C code and
means to loop forever.

Some other file functions are fread, fwrite, fputc, fprintf, and fseek. See
fwrite(3), fputc(3), fprint£(3), and fseek(3).

22.1.8 Reading command-line arguments inside C programs

Up until now, you are probably wondering what the (int argc, char *argv([])
are for. These are the command-line arguments passed to the program by the shell.
argc is the total number of command-line arguments, and argv is an array of strings
of each argument. Printing them out is easy:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int main (int argc, char *argvl[])
{
int 1i;
for (1 = 0; 1 < argc; i++) |
printf ("argument %d is %s\n", i, argv[i]);
}

return 0;

22.1.9 A more complicated example

Here we put this altogether in a program that reads in lots of files and dumps them as
words. Here are some new notations you will encounter: != is the inverse of == and
tests if not-equal-to; realloc reallocates memory—it resizes an old block of memory so
that any bytes of the old block are preserved; \n, \t mean the newline character, 10,
or the tab character, 9, respectively (see ascii(7)).

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void word_dump (char *filename)
{

int length_of_word;

int amount_allocated;

218

10

15

20

25

30

35

40

45

50

55

60

65

70

22. Trivial Introduction to C

22.1. C Fundamentals

char *qj;

FILE *f;

int c;

c = 0;

f = fopen (filename, "r");

if (£ == 0) {
perror ("fopen failed");
exit (1);

}
length_of_word = 0;

amount_allocated = 256;
g = malloc (amount_allocated);

if (g == 0) {
perror ("malloc failed");
abort ();

}

while (¢ != -1) {

if (length_of _word >= amount_allocated) {
amount_allocated = amount_allocated * 2;
g = realloc (g, amount_allocated);
if (g == 0) {
perror ("realloc failed");
abort ();

c = fgetc (f);

g[length_of_word] c;
if (c==-1 1|l c==""7 1] c=="\n" || c=="\t")
if (length_of_word > 0) {
gllength_of_word] = 0;

printf ("$s\n", q);
}
amount_allocated = 256;
g = realloc (g, amount_allocated);

if (g == 0) {
perror ("realloc failed");
abort ();

}
length_of_word = 0;
} else {
length_of_word = length_of_word + 1;
}
}

fclose (f);

int main (int argc, char *argv[])
{

int 1i;

if (argc < 2) {
printf ("Usage:\n\twordsplit <filename> ...\n");
exit (1);

}

for (i = 1; 1 < argc; i++) {
word_dump (argv[il);

219

{

75

22.1. C Fundamentals 22. Trivial Introduction to C

}

return 0;

This program is more complicated than you might immediately expect. Read-
ing in a file where we are sure that a word will never exceed 30 characters is simple.
But what if we have a file that contains some words that are 100,000 characters long?
GNU%? programs are expected to behave correctly under these circumstances.

To cope with normal as well as extreme circumstances, we start off assuming that
a word will never be more than 256 characters. If it appears that the word is growing
over 256 characters, we reallocate the memory space to double its size (lines 32 amd
33). When we start with a new word, we can free up memory again, so we realloc
back to 256 again (lines 48 and 49). In this way we are using the minimum amount of
memory at each point in time.

We have hence created a program that can work efficiently with a 100-gigabyte
file just as easily as with a 100-byte file. This is part of the art of C programming.

Experienced C programmers may actually scoff at the above listing because it
really isn’t as “minimalistic” as is absolutely possible. In fact, it is a truly excellent
listing for the following reasons:

e The program is easy to understand.
e The program uses an efficient algorithm (albeit not optimal).

e The program contains no arbitrary limits that would cause unexpected behavior
in extreme circumstances.

e The program uses no nonstandard C functions or notations that would prohibit
it compiling successfully on other systems. It is therefore portable.

Readability in C is your first priority—it is imperative that what you do is obvious to anyone
reading the code.

22.1.10 #include statements and prototypes

At the start of each program will be one or more #include statements. These tell the
compiler to read in another C program. Now, “raw” C does not have a whole lot in the
way of protecting against errors: for example, the st rcpy function could just as well
be used with one, three, or four arguments, and the C program would still compile.
It would, however, wreak havoc with the internal memory and cause the program to
crash. These other .h C programs are called header files. They contain templates for

220

22. Trivial Introduction to C 22.1. C Fundamentals

how functions are meant to be called. Every function you might like to use is contained
in one or another template file. The templates are called function prototypes. ~C++ has
something called “templates.” This is a special C++ term having nothing to do with the discussion here\

A function prototype is written the same as the function itself, but without the
code. A function prototype for word_dump would simply be:

[void word_dump (char *filename);]

The trailing ; is essential and distinguishes a function prototype from a function.

After a function prototype is defined, any attempt to use the function in a way
other than intended—say, passing it to few arguments or arguments of the wrong
type—will be met with fierce opposition from gcc.

You will notice that the #include <string.h> appeared when we started
using string operations. Recompiling these programs without the #include
<string.h> line gives the warning message

(ﬁytest.c:Zl: warning: implicit declaration of function ‘strncpy’]

which is quite to the point.

The function prototypes give a clear definition of how every function is to be
used. Man pages will always first state the function prototype so that you are clear on
what arguments are to be passed and what types they should have.

22.1.11 C comments

A C comment is denoted with /* <comment lines> */ and can span multiple
lines. Anything between the /* and */ is ignored. Every function should be com-
mented, and all nonobvious code should be commented. It is a good maxim that a
program that needs lots of comments to explain it is badly written. Also, never com-
ment the obvious, and explain why you do things rather that what you are doing. It is
advisable not to make pretty graphics between each function, so rather:

/* returns -1 on error, takes a positive integer */
int sqgr (int x)

{

<ol
than
/***************************____SQR____******************************
* x = argument to make the square of *
* return value = *
* -1 (on error) *

* square of x (on success) *

**/

221

22.1. C Fundamentals 22. Trivial Introduction to C

int sqr (int x)
{

<ooo>

which is liable to cause nausea. In C++, the additional comment // is allowed,
whereby everything between the // and the end of the line is ignored. It is accepted
under gcc, but should not be used unless you really are programming in C++. In addi-
tion, programmers often “comment out” lines by placing a #if 0 ...#endif around
them, which really does exactly the same thing as a comment (see Section 22.1.12) but
allows you to have comments within comments. For example

int x;
x = 10;
#if O
printf ("debug: x is %d\n", x); /* print debug information */
5 | #endif
y = x + 10;
< o>

comments out Line 4.

22.1.12 #define and #if — C macros

Anything starting with a # is not actually C, but a C preprocessor directive. A C program
is first run through a preprocessor that removes all spurious junk, like comments, #in-
clude statements, and anything else beginning with a #. You can make C programs
much more readable by defining macros instead of literal values. For instance,

[#define START_BUFFER_SIZE 256]

in our example program, #defines the text START_BUFFER_SIZE to be the text 256.
Thereafter, wherever in the C program we have a START_BUFFER_SIZE, the text 256
will be seen by the compiler, and we can use START_BUFFER_SIZE instead. This is a
much cleaner way of programming because, if, say, we would like to change the 256 to
some other value, we only need to change it in one place. START_BUFFER_SIZE is also
more meaningful than a number, making the program more readable.

Whenever you have a literal constant like 256, you should replace it with a macro
defined near the top of your program.

You can also check for the existence of macros with the #ifdef and #ifndef
directive. # directives are really a programming language all on their own:

/* Set START_BUFFER_SIZE to fine-tune performance before compiling: */
#define START_BUFFER_SIZE 256
/* #define START_BUFFER_SIZE 128 */
/* #define START_BUFFER_SIZE 1024 */
5 /* #define START_BUFFER_SIZE 16384 */

222

10

15

20

25

22. Trivial Introduction to C 22.2. Debugging with gdb and strace

#ifndef START_BUFFER_SIZE
#error This code did not define START_BUFFER_SIZE. Please edit
#endif

#if START_BUFFER_SIZE <= 0
#error Wooow! START_BUFFER_SIZE must be greater than zero
#endif

#if START_BUFFER_SIZE < 16

#warning START_BUFFER_SIZE to small, program may be inefficient
#elif START_BUFFER_SIZE > 65536

#warning START_BUFFER_SIZE to large, program may be inefficient
#else

/* START_BUFFER_SIZE is ok, do not report */

#endif

void word_dump (char *filename)
{
<oow>
amount_allocated = START_BUFFER_SIZE;
g = malloc (amount_allocated);
<.oo0>

22.2 Debugging with gdb and strace

Programming errors, or bugs, can be found by inspecting program execution. Some de-
velopers claim that the need for such inspection implies a sloppy development process.
Nonetheless it is instructive to learn C by actually watching a program work.

2221 gdb

The GNU%? debugger, gdb, is a replacement for the standard UNIX debugger, db. To
debug a program means to step through its execution line-by-line, in order to find pro-
gramming errors as they happen. Use the command gcc -Wall -g -00 -o word-
split wordsplit.c to recompile your program above. The —g option enables de-
bugging support in the resulting executable and the —00 option disables compiler op-
timization (which sometimes causes confusing behavior). For the following example,
create a test file readme.txt with some plain text inside it. You can then run gdb
-q wordsplit. The standard gdb prompt will appear, which indicates the start of a
debugging session:

[(gdb)

)

At the prompt, many one letter commands are available to control program execution.

223

22.2. Debugging with gdb and strace 22. Trivial Introduction to C

The first of these is run which executes the program as though it had been started from
a regular shell:

(gdb) r
Starting program: /homes/src/wordsplit/wordsplit
Usage:

wordsplit <filename> ...

Program exited with code 01.

Obviously, we will want to set some trial command-line arguments. This is done with
the special command, set args:

[(gdb) set args readme.txt readme2.txt]

The break command is used like b [[<file>:]<line>|<function>], and
sets a break point at a function or line number:

(gdb) b main
Breakpoint 1 at 0x8048796: file wordsplit.c, line 67.

A break point will interrupt execution of the program. In this case the program will
stop when it enters the main function (i.e., right at the start). Now we can run the
program again:

(gdb) r
Starting program: /home/src/wordsplit/wordsplit readme.txt readme2.txt

Breakpoint 1, main (argc=3, argv=0xbffff804) at wordsplit.c:67
67 if (argc < 2) {
(gdb)

As specified, the program stops at the beginning of the main function at line 67.

If you are interested in viewing the contents of a variable, you can use the print
command:

(gdb) p argc

$1 = 3

(gdb) p argv[l]

$2 = 0xbffff988 "readme.txt"

which tells us the value of argc and argv[1]. The list command displays the lines
about the current line:

(gdb) 1

63 int main (int argc, char *argvl[])
64 {

65 int i;

66

224

22. Trivial Introduction to C 22.2. Debugging with gdb and strace

67 if (argc < 2) {

68 printf ("Usage:\n\twordsplit <filename> ...\n");
69 exit (1);

70 }

The list command can also take an optional file and line number (or even a function
name):

gdb) 1 wordsplit.c:1
#include <stdlib.h>
#include <stdio.h>
#include <string.h>

void word_dump (char *filename)
{

int length_of_word;

int amount_allocated;

W ~J oy U WN R~

Next, we can try setting a break point at an arbitrary line and then using the
continue command to proceed with program execution:

(gdb) b wordsplit.c:48

Breakpoint 2 at 0x804873e: file wordsplit.c, line 48,
(gdb) ¢

Continuing.

Zaphod

Breakpoint 2, word_dump (filename=0xbffff988 "readme.txt") at wordsplit.c:48
48 amount_allocated = 256;

Execution obediently stops at line 48. At this point it is useful to run a backtrace. This
prints out the current stack which shows the functions that were called to get to the
current line. This output allows you to trace the history of execution.

(gdb) bt
#0 word_dump (filename=0xbffff988 "readme.txt") at wordsplit.c:48
#1 0x80487e0 in main (argc=3, argv=0xbffff814) at wordsplit.c:73
#2 0x4003db65 in _ libc_start_main (main=0x8048790 <main>, argc=3, ubp_av=0xbf
fff814, init=0x8048420 <_init>,

fini=0x804883c <_fini>, rtld_fini=0x4000df24 <_dl_fini>, stack_end=0xbffff8
Oc) at ../sysdeps/generic/libc-start.c:111

The clear command then deletes the break point at the current line:

(gdb) clear
Deleted breakpoint 2

The most important commands for debugging are the next and step commands.
The n command simply executes one line of C code:

225

10

15

20

25

10

22.2. Debugging with gdb and strace 22. Trivial Introduction to C

(gdb) n

49 g = realloc (g, amount_allocated);
(gdb) n

50 if (g == 0) {

(gdb) n

54 length_of_word = 0;

This activity is called stepping through your program. The s command is identical to
n except that it dives into functions instead of running them as single line. To see the
difference, step over line 73 first with n, and then with s, as follows:

(gdb) set args readme.txt readme2.txt

(gdb) b main

Breakpoint 1 at 0x8048796: file wordsplit.c, line 67.

(gdb) r

Starting program: /home/src/wordsplit/wordsplit readme.txt readme2.txt

Breakpoint 1, main (argc=3, argv=0xbffff814) at wordsplit.c:67
67 if (argc < 2) {

(gdb) n

72 for (1 = 1; 1 < argc; 1i++) {

(gdb) n

73 word_dump (argv[i]);

(gdb) n

Zaphod

has

two

heads

72 for (1 = 1; 1 < argc; i++) {

(gdb) s

73 word_dump (argv[i]);

(gdb) s

word_dump (filename=0xbffff993 "readme2.txt") at wordsplit.c:13
13 c = 0;

(gdb) s

15 f = fopen (filename, "r");

(gdb)

An interesting feature of gdb is its ability to attach onto running programs. Try
the following sequence of commands:

[root@cericon]# 1lpd

[root@cericon]# ps awx | grep lpd

28157 2 S 0:00 lpd Waiting

28160 pts/6 S 0:00 grep lpd
[root@cericon]# gdb —q /usr/sbin/lpd

(no debugging symbols found)...

(gdb) attach 28157

Attaching to program: /usr/sbin/lpd, Pid 28157
0x40178bfe in _ _select () from /lib/libc.so.6
(gdb)

226

22. Trivial Introduction to C 22.3. C Libraries

The 1pd daemon was not compiled with debugging support, but the point is still
made: you can halt and debug any running process on the system. Try running a
bt for fun. Now release the process with

(gdb) detach
Detaching from program: /usr/sbin/lpd, Pid 28157

The debugger provides copious amounts of online help. The help command can
be run to explain further. The gdb info pages also elaborate on an enormous number
of display features and tracing features not covered here.

22.2.2 Examining core files

If your program has a segmentation violation (“segfault”) then a core file will be writ-
ten to the current directory. This is known as a core dump. A core dump is caused by
a bug in the program—its response to a SIGSEGV signal sent to the program because
it tried to access an area of memory outside of its allowed range. These files can be
examined using gdb to (usually) reveal where the problem occurred. Simply run gdb
<executable> . /core and then type bt (or any gdb command) at the gdb prompt.
Typing £ile ./core will reveal something like

[/root/core: ELF 32-bit LSB core file of ’<executable>’ (signal 11), Intel 80386, version 1]

22.2.3 strace

The strace command prints every system call performed by a program. A system call
is a function call made by a C library function to the LINUX{) kernel. Try

strace 1ls
strace ./wordsplit

If a program has not been compiled with debugging support, the only way to
inspect its execution may be with the strace command. In any case, the command
can provide valuable information about where a program is failing and is useful for
diagnosing errors.

22.3 C Libraries

We made reference to the Standard C library. The C language on its own does almost
nothing; everything useful is an external function. External functions are grouped into

227

15

20

10

22.3. C Libraries 22. Trivial Introduction to C

libraries. The Standard C library is the file /1ib/1libc.so. 6. To list all the C library
functions, run:

nm /lib/libc.so.6
nm /lib/libc.so.6 | grep ' T ' | cut -f3 -d’" ' | grep -v '"_’ | sort -u | less

many of these have man pages, but some will have no documentation and require you
to read the comments inside the header files (which are often most explanatory). It is
better not to use functions unless you are sure that they are standard functions in the
sense that they are common to other systems.

To create your own library is simple. Let’s say we have two files that contain
several functions that we would like to compile into a library. The files are sim-
plemath_sgrt.c

#include <stdlib.h>
#include <stdio.h>

static int abs_error (int a, int b)
{
if (a > b)
return a - b;
return b - aj;

int simple_math_isqgrt (int x)

int result;
if (x < 0) {
fprintf (stderr,
"simple_math_sqgrt: taking the sgrt of a negative number\n");

abort ();

}

result = 2;

while (abs_error (result * result, x) > 1) {
result = (x / result + result) / 2;

}

return result;

and simple math_pow.c

#include <stdlib.h>
#include <stdio.h>

int simple_math_ipow (int x, int vy)
{

int result;

if (x == [y == 0)
return 1;
if (x == 0 && y < 0) {

fprintf (stderr,
"simple_math_pow: raising zero to a negative power\n");

228

15

20

22. Trivial Introduction to C 22.3. C Libraries

abort ();
}
if (y < 0)
return 0;
result = 1;
while (y > 0) {
result = result * x;
y=y -1
}

return result;

We would like to call the library simple_math. It is good practice to name all the

be used outside of the file simple_math_sqgrt.c and so we put the keyword static
in front of it, meaning that it is a local function.

We can compile the code with:

gcc -Wall -c simple_math_sqrt.c
gcc -Wall -c simple_math_pow.c

The -c option means compile only. The code is not turned into an executable. The
generated files are simplemath_sqgrt.oand simplemath_pow.o. These are called
object files.

We now need to archive these files into a library. We do this with the ar command
(a predecessor of tar):

ar libsimple_math.a simple_math_sqgrt.o simple_math_pow.o
ranlib libsimple_math.a

The ranlib command indexes the archive.

The library can now be used. Create a file mytest.c:

#include <stdlib.h>
#include <stdio.h>

int main (int argc, char *argv[])
{
printf ("%$d\n", simple_math_ipow (4, 3));
printf ("%$d\n", simple_math_isqrt (50));
return 0;

and run

gcc -Wall -c mytest.c
gcc -o mytest mytest.o -L. -lsimple_math

229

22.4. G Projects — Makefiles 22. Trivial Introduction to C

The first command compiles the file mytest.c into mytest. o, and the second func-
tion is called linking the program, which assimilates mytest .o and the libraries into a
single executable. The option L. means to look in the current directory for any libraries
(usually only /1ib and /usr/1lib are searched). The option ~1simple_math means
to assimilate the library 1ibsimple math.a (1ib and .a are added automatically).
This operation is called static \Nothing to do with the “static” keyword™\ linking because
it happens before the program is run and includes all object files into the executable.

As an aside, note that it is often the case that many static libraries are linked into
the same program. Here order is important: the library with the least dependencies
should come last, or you will get so-called symbol referencing errors.

We can also create a header file simple_math.h for using the library.

/* calculates the integer square root, aborts on error */
int simple_math_isqrt (int x);

/* calculates the integer power, aborts on error */
int simple_math_ipow (int x, int y);

Add the line #include "simplemath.h" to the top of mytest.c:

#include <stdlib.h>
#include <stdio.h>
#include "simple_math.h"

This addition gets rid of the implicit declaration of function warning mes-
sages. Usually #include <simple math.h> would be used, but here, this is a
header file in the current directory—our own header file—and this is where we use
"simple_math.,h" instead of <simple math.h>.

224 C Projects —Makefiles

What if you make a small change to one of the files (as you are likely to do very often
when developing)? You could script the process of compiling and linking, but the
script would build everything, and not just the changed file. What we really need is
a utility that only recompiles object files whose sources have changed: make is such a
utility.

make is a program that looks inside a Makefile in the current directory then
does a lot of compiling and linking. Makefiles contain lists of rules and dependencies
describing how to build a program.

Inside a Makefile you need to state a list of what-depends-on-what dependencies
that make can work through, as well as the shell commands needed to achieve each
goal.

230

22. Trivial Introduction to C 22.4. C Projects — Makefiles

2241 Completing our example Makefile

Our first (last?) dependency in the process of completing the compilation is thatmytest
depends on both the library, 1ibsimplemath.a, and the object file, mytest.o. In
make terms we create a Makefile line that looks like:

(ﬁytest: libsimple_math.a mytest.o

)

meaning simply that the files 1ibsimple math.a mytest.o must exist and be up-
dated before mytest. mytest: is called a make target. Beneath this line, we also need
to state how to build mytest:

E

gcc -Wall -o $@ mytest.o -L. -lsimple_math

)

The $@ means the name of the target itself, which is just substituted with mytest. Note
that the space before the gcc is a tab character and not 8 space characters.

The next dependency is that 1ibsimple math.a dependson simple math_sgrt.o
simple math_pow.o. Once again we have a dependency, along with a shell script to
build the target. The full Makefile ruleis:

libsimple_math.a: simple_math_sqgrt.o simple_math_pow.o
rm —-f $@
ar rc $Q@ simple_math_sqgrt.o simple_math_pow.o
ranlib $@

Note again that the left margin consists of a single tab character and not spaces.

The final dependency is that the files simplemath_sgrt.o and sim-
plemathpow.o depend on the files simplemath_sgrt.c and sim-
plemath_pow.c. This requires two make target rules, but make has a short way of
stating such a rule in the case of many C source files,

.Cc.O:
gcc -Wall -c -o $*.0 $<

which means that any . o files needed can be built from a . c file of a similar name by
means of the command gcc -Wall -c -o $*.o $<, where $* .o means the name
of the object file and $ < means the name of the file that $* . o depends on, one at a time.

22.4.2 Putting it all together

Makefiles can, in fact, have their rules put in any order, so it’s best to state the most
obvious rules first for readability.

There is also a rule you should always state at the outset:

231

22.4. G Projects — Makefiles 22. Trivial Introduction to C

[all: libsimple_math.a mytest]

The all: target is the rule that make tries to satisfy when make is run with no
command-line arguments. This just means that 1ibsimple math.a and mytest are
the last two files to be built, that is, they are the top-level dependencies.

Makef1iles also have their own form of environment variables, like shell scripts.
You can see that we have used the text simple_math in three of our rules. It makes
sense to define a macro for this so that we can easily change to a different library name.

Our final Makefile is:

Comments start with a # (hash) character like shell scripts.
Makefile to build libsimple_math.a and mytest program.
Paul Sheer <psheer@icon.co.za> Sun Mar 19 15:56:08 2000

5 | OBJS = simple_math_sqrt.o simple_math_pow.o
LIBNAME = simple_math
CFLAGS = -Wall
all: 1ib$ (LIBNAME) .a mytest
10
mytest: 1ib$ (LIBNAME) .a mytest.o

gcc $(CFLAGS) -o $@ mytest.o -L. -1${LIBNAME}

1ib$ (LIBNAME) .a: $ (OBJS)

15 rm —-f $@
ar rc $@ $(OBJS)
ranlib $@
c.o:
20 gcc $(CFLAGS) -c -o $*.o0 S$<
clean:

rm —-f *,0 *.,a mytest

We can now easily type

(make)

in the current directory to cause everything to be built.

You can see we have added an additional disconnected target clean:. Targets
can be run explictly on the command-line like this:

[make clean]

which removes all built files.

Makefiles have far more uses than just building C programs. Anything that
needs to be built from sources can employ a Makefile to make things easier.

232

Chapter 23

Shared Libraries

This chapter follows directly from our construction of static .a libraries in Chapter
22. It discusses creation and installation of Dynamically Linked Libraries (DLLs). Here I
show you both so that you have a good technical overview of how DLLs work on UNIX.
You can then promptly forget everything except 1dconfig and LD_LIBRARY_PATH
discussed below.

The .a library file is good for creating functions that many programs can in-
clude. This practice is called code reuse. But note how the . a file is linked into (included)
in the executable mytest in Chapter 22. mytest is enlarged by the size of 1ibsim—
plemath.a. When hundreds of programs use the same . a file, that code is effectively
duplicated all over the file system. Such inefficiency was deemed unacceptable long
before LINUX{}, so library files were invented that only link with the program when
it runs—a process known as dynamic linking. Instead of . a files, similar . so (shared
object) files live in /1ib/ and /usr/1ib/ and are automatically linked to a program
when it runs.

23.1 Creating DLL . so Files

Creating a DLL requires several changes to the Makefile on page 232:

OBJS = simple_math_sqgrt.o simple_math_pow.o
LIBNAME = simple_math

SONAME = libsimple_math.so0.1.0.0

SOVERSION = libsimple_math.so.1.0

CFLAGS = -Wall

all: 1ib$ (LIBNAME) .so mytest

233

15

20

23.2. DLL Versioning 23. Shared Libraries

mytest: 1ib$ (LIBNAME) .so mytest.o
gcc $(CFLAGS) -o $@ mytest.o -L. -1${LIBNAME}

1ib$ (LIBNAME) .so: $(OBJS)
gcc —-shared $(CFLAGS) $(OBJS) -lc -Wl,-soname -W1,$(SOVERSION) \
-0 $(SONAME) && \
In -sf $(SONAME) $ (SOVERSION) && \
In -sf $(SONAME) 1ib$ (LIBNAME).so

gcc —fPIC -DPIC $(CFLAGS) -c -o $*.,0 $<

clean:

rm —-f *,0 *.,a *.so mytest

The —shared option to gcc builds our shared library. The W options are linker
options that set the version number of the library that linking programs will load at
runtime. The ~fPIC -DPIC means to generate position-independent code, that is, code
suitable for dynamic linking.

After running make we have

1rwxrwxrwx root root 23 Sep 17 22:02 libsimple_math.so -> libsimple_math.s0.1.0.0
root root 23 Sep 17 22:02 libsimple_math.so.1.0 -> libsimple_math.s0.1.0.0
root root 6046 Sep 17 22:02 libsimple_math.so.1.0.0

root root 13677 Sep 17 22:02 mytest

1rwxrwxrwx
—IWXr-xr-x

[

—IWXI-Xr-x

23.2 DLL Versioning

You may observe that our three . so files are similar to the many files in /1ib/ and
/usr/1lib/. This complicated system of linking and symlinking is part of the process
of library versioning. Although generating a DLL is out of the scope of most system
admin tasks, library versioning is important to understand.

DLLs have a problem. Consider a DLL that is outdated or buggy: simply over-
writing the DLL file with an updated file will affect all the applications that use it. If
these applications rely on certain behavior of the DLL code, then they will probably
crash with the fresh DLL. UNIX has elegantly solved this problem by allowing mul-
tiple versions of DLLs to be present simultaneously. The programs themselves have
their required version number built into them. Try

[ldd mytest]

which will show the DLL files that mytest is scheduled to link with:

(libsimple_math.so.l.o => ,/libsimple_math.so.1.0 (0x40018000) W

234

23. Shared Libraries 23.3. Installing DLL . so Files

libc.so.6 => /lib/libc.so.6 (0x40022000)
/lib/1d-1linux.so0.2 => /lib/ld-linux.so.2 (0x40000000)

At the moment, we are interested in 1ibsimple_math.so.1.0. Note how it matches
the SOVERSION variable in the Makefile. Note also how we have chosen our
symlinks. We are effectively allowing mytest to link with any future libsim-
plemath.so.1.0.? (were our simple math library to be upgraded to a new ver-
sion) purely because of the way we have chosen our symlinks. However, it will not
link with any library libsimplemath.so.1.1.?, for example. As developers of
libsimple_math, we are deciding that libraries of a different minor \ For this example
we are considering libraries to be named 11ibname. so .major . minor . patch™\. version number will be
incompatible, whereas libraries of a different patch level will not be incompatible.

We could also change SOVERSION to libsimplemath.so.1l. This would ef-
fectively be saying that future libraries of different minor version numbers are compat-
ible; only a change in the major version number would dictate incompatibility.

23.3 Installing DLL . so Files

If yourun . /mytest, you will be greeted with an error while loading shared
libraries message. The reason is that the dynamic linker does not search the current
directory for . so files. To run your program, you will have to install your library:

mkdir -p /usr/local/lib
install -m 0755 libsimple_math.so libsimple_math.so.1.0 \
libsimple_math.so0.1.0.0 /usr/local/lib

Then, edit the /etc/1d.so.conf file and add a line

[/usr/local/lib]

Then, reconfigure your libraries with

[ldconfig j

Finally, run your program with

export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/lib"
./mytest

ldconfig configures all libraries on the system. It recreates appropriate sym-
links (as we did) and rebuilds a lookup cache. The library directories it considers are
/1ib, /usr/1lib, and those listed in /etc/1d.so.config. The ldconfig com-
mand should be run automatically when the system boots and manually whenever
libraries are installed or upgraded.

235

23.3. Installing DLL . so Files 23. Shared Libraries

The LD_LIBRARY_PATH environment variable is relevant to every executable
on the system and similar to the PATH environment variable. LD_LIBRARY_PATH
dictates what directories should be searched for library files. Here, we appended
/usr/local/lib to the search path in case it was missing. Note that even with
LD_LIBRARY_PATH unset, /1ib and /usr/1ib will always be searched.

236

Chapter 24

Source and Binary Packages

In this chapter you will, first and foremost, learn to build packages from source, build-
ing on your knowledge of Makefiles in Chapter 22. Most packages, however, also
come as . rpm (RedHat) or . deb (Debian(0) files, which are discussed further below.

24.1 Building GNU Source Packages

Almost all packages originally come as C sources, tared and available from one of
the many public FTP sites, like metalab.unc.edu. Thoughtful developers would

have made their packages GNU%Y standards compliant. This means that unt arring the
package will reveal the following files inside the top-level directory:

INSTALL This is a standard document beginning with the line “These are
generic installation instructions.” Since all GNUZ packages are
installed in the same way, this file should always be the same.

NEWS News of interest to users.

README Any essential information. This is usually an explanation of what the package
does, promotional material, and anything special that need be done to install the
package.

COPYING The GNU%? General Public License.
AUTHORS A list of major contributors.

ChangeLog A specially formatted list containing a history of all changes ever done to
the package, by whom, and on what date. Used to track work on the package.

237

24.1. Building GNU Source Packages 24. Source and Binary Packages

Being GNU% standards compliant should also mean that the package can be installed
with only the three following commands:

./configure
make
make install

It also usually means that packages will compile on any UNIX system. Hence, this

section should be a good guide to getting LINUX{} software to work on non-LINUX
machines.

An example will illustrate these steps. Begin by downloading cooledit from
metalab.unc.edu in the directory /pub/Linux/apps/editors/X/cooledit,
using ftp. Make a directory /opt /src in which to build such custom packages. Now
run

cd /opt/src
tar -xvzf cooledit-3.17.2.tar.gz
cd cooledit-3.17.2

You will notice that most sources have the name package—major . minor . patch.tar . gz.
The major version of the package is changed when the developers make a substantial
feature update or when they introduce incompatibilities to previous versions. The
minor version is usually updated when small features are added. The patch number
(also known as the patch level) is updated whenever a new release is made and usually
signifies bug fixes.

At this point you can apply any patches you may have. See Section 20.7.3.

You can now . /configure the package. The . /configure scriptis generated
by autoconf—a package used by developers to create C source that will compile
on any type of UNIX system. The autoconf package also contains the GNU Coding
Standards to which all software should comply. “autoconf is the remarkable work of David
MacKenzie. I often hear the myth that UNIX systems have so diverged that they are no longer compatible.
The fact that sophisticated software like cooledit (and countless others) compiles on almost any UNIX
machine should dispel this nonsense. There is also hype surrounding developers “porting” commercial
software from other UNIX systems to LINUX. If they had written their software in the least bit properly to
begin with, there would be no porting to be done. In short, all LINUX software runs on all UNIxs. The only
exceptions are a few packages that use some custom features of the LINUX kernel ™\

[./configure ——-prefix=/opt/cooledit]

Here, ——prefix indicates the top-level directory under which the package will be
installed. (See Section 17.2.). Always also try

[./configure --help]

to see package-specific options.

238

24. Source and Binary Packages 24.1. Building GNU Source Packages

Another trick sets compile options:

ECFLAGS:’—OZ -fomit-frame-pointer -s -pipe’ ./configure --prefix=/opt/cooledit J

-02 Sets compiler optimizations to be “as fast as possible without making the binary
larger.” (-03 almost never provides an advantage.)

-fomit-frame-pointer Permits the compiler to use one extra register that would
normally be used for debugging. Use this option only when you are absolutely
sure you have no interest in analyzing any running problems with the package.

-s Strips the object code. This reduces the size of the object code by eliminating any
debugging data.

-pipe Instructs not to use temporary files. Rather, use pipes to feed the code through
the different stages of compilation. This usually speeds compilation.

Compile the package. This can take up to several hours depending on the
amount of code and your CPU power. “cooledit will compile in under 10 minutes on any
entry-level machine at the time of writing\

o)

You can also run

[ﬁake CFLAGS='"-00 -g’]

if you decide that you would rather compile with debug support after all.
Install the package with

[ﬁake install]

A nice trick to install into a different subdirectory is “Not always supported\:

mkdir /tmp/cooledit
make install prefix=/tmp/cooledit

You can use these commands to pack up the completed build for untaring onto a
different system. You should, however, never try to run a package from a directory
different from the one it was ——prefixed to install into, since most packages compile
in this location and then access installed data from beneath it.

Using a source package is often the best way to install when you want the pack-
age to work the way the developers intended. You will also tend to find more docu-
mentation, when vendors have neglected to include certain files.

239

24.2. RedHat and Debian Binary Packages 24. Source and Binary Packages

24.2 RedHat and Debian Binary Packages

In this section, we place Debian(O examples inside parentheses, (...). Since these are
examples from actual systems, they do not always correspond.

24.2.1 Package versioning

The package numbering for RedHat and Debian(© packages is often as follows (al-
though this is far from a rule):

<package-name>-<source-version>-<package-version>,<hardware-platform>.rpm
(<package—-name>_<source-version>-<package-version>.deb)

For example,

bash-1.14.7-22,1386.rpm
(bash_2.03-6.deb)

is the Bourne Again Shell you are using, major version 1, minor version 14, patch 7,
package version 22, compiled for an Intel 386 processor. Sometimes, the Debian(O
package will have the architecture appended to the version number, in the above case,
perhaps bash_2.03-6.1386.deb.

The <source-version> is the version on the original . tar file (as above). The
<package-version>, also called the release, refers to the . rpm file itself; in this case,
bash-1.14.7-22.1386.rpm has been packed together for the 8th time, possibly
with minor improvements to the way it installs with each new number. The 1386 is
called the architecture and could also be sparc for a SPARC ~Type of processor used in
Sun Microsystems workstations\. machine, ppc for a PowerPC ~ Another non-Intel workstation™\,,
alpha for a DEC Alpha ~ High-end 64 bit server/workstation™\. machine, or several others.

24.2.2 Installing, upgrading, and deleting

To install a package, run the following command on the . rpm or . deb file:

rpm -1 mirrordir-0.10.48-1.i386.rpm
(dpkg —-i mirrordir_0.10.48-2.deb)

Upgrading (Debian(® automatically chooses an upgrade if the package is already
present) can be done with the following command,

rpm -U mirrordir-0,10.49-1,1386.rpm
(dpkg —-i mirrordir_0.10.49-1.deb)

and then completely uninstalling with

240

24. Source and Binary Packages 24.2. RedHat and Debian Binary Packages

rpm —e mirrordir
(dpkg —--purge mirrordir)

With Debian(©, a package removal does not remove configuration files, thus allowing
you to revert to its current setup if you later decide to reinstall:

[dpkg -r mirrordir]

If you need to reinstall a package (perhaps because of a file being corrupted), use

[rpm -1 —--force python-1.6-2,1386.rpm j

Debian(© reinstalls automatically if the package is present.

24.2.3 Dependencies

Packages often require other packages to already be installed in order to work. The
package database keeps track of these dependencies. Often you will get an error:
failed dependencies: (or dependency problemsforDebmnGnIneﬁmgeM&wn
you try to install. This means that other packages must be installed first. The same
might happen when you try to remove packages. If two packages mutually require
each other, you must place them both on the command-line at once when installing.
Sometimes a package requires something that is not essential or is already provided by
an equivalent package. For example, a program may require sendmail to be installed
even though exim is an adequate substitute. In such cases, the option ——nodeps skips
dependency checking.

rpm -1 —-—nodeps <rpm-file>
(dpkg -i —-—-ignore-depends=<required-package> <deb-file>)

Note that Debian(© is far more fastidious about its dependencies; override them only
when you are sure what is going on underneath.

24.2.4 Package queries

.rpmand .deb packages are more than a way of archiving files; otherwise, we could
justuse . tar files. Each package has its file list stored in a database that can be queried.
The following are some of the more useful queries that can be done. Note that these
are queries on already installed packages only:

To get a list of all packages (query all, 1list),

[zom a2]

241

24.2. RedHat and Debian Binary Packages 24. Source and Binary Packages

U dpkg -1 "*/) J

To search for a package name,

rpm —-ga | grep <regular-expression>
(dpkg -1 <glob-expression>)

Try,

rpm —ga | grep util
(dpkg -1 "*util*’)

To query for the existence of a package, say, textutils (query, list),

rpm —-q textutils
(dpkg -1 textutils)

gives the name and version

textutils-2.0e-7
(11 textutils 2.0-2 The GNU text file processing utilities.)

To get info on a package (query info, status),

rpm —qgi <package>
(dpkg -s <package>)

To list libraries and other packages required by a package,

rpm —-gR <package>
(dpkg -s <package> | grep Depends)

To list what other packages require this one (with Debian(® we can check by attempting
a removal with the ——no-act option to merely test),

rpm —-q —--whatrequires <package>
(dpkg —--purge —--no-act <package>)

24.2.5 File lists and file queries

To get a file list contained by a package “Once again, not for files but packages already
installed X\,

242

24. Source and Binary Packages 24.2. RedHat and Debian Binary Packages

(dpkg -L <package>)

rpm —-gl <package> ’

Package file lists are especially useful for finding what commands and documentation
a package provides. Users are often frustrated by a package that they “don’t know
what to do with.” Listing files owned by the package is where to start.

To find out what package a file belongs to,

rpm —-gf <filename>
(dpkg -S <filename>)

For example, rpm —-gf /etc/rc.d/init.d/httpd (or rpm —gf
/etc/init.d/httpd) gives apache-mod_ssl-1.3.12.2.6.6-1 on my system,
and rpm -gl fileutils-4.0w-3 | grep bin gives alist of all other commands
from fileutils. A trick to find all the sibling files of a command in your PATH is:

(dpkg -L ‘dpkg -S \‘which <command> \‘' | cut -f1 -d:‘')

rpm —gql ‘rpm -gf \‘which --skip-alias <command> \‘'

24.2.6 Package verification

You sometimes might want to query whether a package’s files have been modified
since installation (possibly by a hacker or an incompetent system administrator). To
verify all packages is time consuming but provides some very instructive output:

(debsums -a)

rpm -V ‘rpm —-ga' ’

However, there is not yet a way of saying that the package installed is the real
package (see Section 44.3.2). To check this, you need to get your actual .deb or . rpm
file and verify it with:

(debsums openssh_2.1.1p4-1_1386.deb)

rpm -Vp openssh-2.1.,1p4-1.1386.rpm ’

Finally, even if you have the package file, how can you be absolutely sure that
it is the package that the original packager created, and not some Trojan substitution?
Use the md5sum command to check:

(ﬁd5sum openssh-2.1.1p4-1.i386.rpm W

243

24.2. RedHat and Debian Binary Packages

24. Source and Binary Packages

t(md5sum openssh_2.1.1p4-1_i386.deb)

J

md5sum uses the MD5 mathematical algorithm to calculate a numeric hash value based
on the file contents, in this case, 8e8d8e95db7fde99c09e1398e4dd3468. This is
identical to password hashing described on page 103. There is no feasible computa-
tional method of forging a package to give the same MD5 hash; hence, packagers will
often publish their md5sum results on their web page, and you can check these against
your own as a security measure.

24.2.7 Special queries

To query a package file that has not been installed, use, for example:

rpm —gp —-9gf ’ [${VERSION}\n]’ <rpm-file>
(dpkg -f <deb-file> Version)

Here, VERSION is a query tag applicable to . rpm files. Here is a list of other tags that
can be queried:

BUILDHOST
BUILDTIME
CHANGELOG
CHANGELOGTEXT
CHANGELOGTIME
COPYRIGHT
DESCRIPTION
DISTRIBUTION
GROUP

LICENSE

NAME

OBSOLETES

0os

PACKAGER
PROVIDES
RELEASE
REQUIREFLAGS
REQUIRENAME
REQUIREVERSION
RPMTAG_POSTIN
RPMTAG_POSTUN
RPMTAG_PREIN

For Debian(©, Version is a control field. Others are

It is further possible to extract all scripts, config, and control files from a .deb

file with:

Conffiles
Conflicts
Depends
Description
Essential

Installed-Size

Maintainer
Package
Pre-Depends
Priority
Provides

Recommends

244

RPMTAG_PREUN
RPMVERSION
SERIAL

SIZE
SOURCERPM
SUMMARY
VENDOR
VERIFYSCRIPT
VERSION

Replaces
Section
Source
Status
Suggests
Version

24. Source and Binary Packages 24.2. RedHat and Debian Binary Packages

[dpkg —-e <deb-file> <out-directory> J

This command creates a directory <out-directory> and places the files in it. You
can also dump the package as a tar file with:

[dpkg ——fsys—tarfile <deb-file>]

or for an , rpm file,

[rmecpio <rpm-file>]

Finally, package file lists can be queried with

rpm -gip <rpm-file>
(dpkg -I <deb-file>)
rpm —-glp <rpm-file>
(dpkg -c <deb-file>)

which is analogous to similar queries on already installed packages.

24.2.8 dpkg/apt versus rpm

Only a taste of Debian(Q package management was provided above. Debian(O has two
higher-level tools: APT (Advanced Package Tool—which comprises the commands apt -
cache, apt—cdrom, apt-config, and apt-get); and dselect, which is an inter-
active text-based package selector. When you first install Debian(O, I suppose the first
thing you are supposed to do is run dselect (there are other graphical front-ends—
search on Fresh Meat http://freshmeat.net/), and then install and configure all the things
you skipped over during installation. Between these you can do some sophisticated
time-saving things like recursively resolving package dependencies through automatic
downloads—that is, just mention the package and APT will find it and what it depends
on, then download and install everything for you. See apt(8), sources.list(5), and
apt.conf(b) for more information.

There are also numerous interactive graphical applications for managing RPM
packages. Most are purely cosmetic.

Experience will clearly demonstrate the superiority of Debian(© packages over
most others. You will also notice that where RedHat-like distributions have chosen a
selection of packages that they thought you would find useful, Debian(© has hundreds
of volunteer maintainers selecting what they find useful. Almost every free UNIX pack-
age on the Internet has been included in Debian(O.

245

24.3. Source Packages 24. Source and Binary Packages

24.3 Source Packages — Building RedHat and Debian
Packages

Both RedHat and Debian(© binary packages begin life as source files from which their
binary versions are compiled. Source RedHat packages will end in .src.rpm, and
Debian(© packages will always appear under the source tree in the distribution. The
RPM-HOWTO details the building of RedHat source packages, and Debian(Q’s dpkg-
dev and packaging-manual packages contain a complete reference to the Debian(©
package standard and packaging methods (try dpkg -L dpkg-dev and dpkg -
L packaging-manual).

The actual building of RedHat and Debian(© source packages is not covered in this
edition.

246

Chapter 25

Introduction to IP

IP stands for Internet Protocol. It is the method by which data is transmitted over the
Internet.

25.1 Internet Communication

At a hardware level, network cards are capable of transmitting packets (also called data-
grams) of data between one another. A packet contains a small block of, say, 1 kilobyte
of data (in contrast to serial lines, which transmit continuously). All Internet com-
munication occurs through transmission of packets, which travel intact, even between
machines on opposite sides of the world.

Each packet contains a header of 24 bytes or more which precedes the data.
Hence, slightly more than the said 1 kilobyte of data would be found on the wire.
When a packet is transmitted, the header would obviously contain the destination ma-
chine. Each machine is hence given a unique IP address—a 32-bit number. There are no
machines on the Internet that do not have an IP address.

The header bytes are shown in Table 25.1.

Table 25.1 IP header bytes

| Bytes | Description \
0 bits 0-3: Version, bits 4-7: Internet Header Length (IHL)
1 Type of service (TOS)
2-3 Length
4-5 Identification

continues...

247

25.1. Internet Communication 25. Introduction to IP

Table 25.1 (continued)

6-7 bits 0-3: Flags, bits 4-15: Offset

8 Time to live (TTL)

9 Type

10-11 Checksum

12-15 Source IP address

16-19 Destination IP address

20-IHL*4-1 | Options + padding to round up to four bytes

\ Data begins at IHL*4 and ends at Length-1

Version for the mean time is 4, although IP Next Generation (version 6) is in the
(slow) process of deployment. IHL is the length of the header divided by 4. TOS (Type
of Service) is a somewhat esoteric field for tuning performance and is not explained
here. The Length field is the length in bytes of the entire packet including the header.
The Source and Destination are the IP addresses from and to which the packet is com-
ing/going.

The above description constitutes the view of the Internet that a machine has.
However, physically, the Internet consists of many small high-speed networks (like
those of a company or a university) called Local Area Networks, or LANs. These are
all connected to each other by lower-speed long distance links. On a LAN, the raw
medium of transmission is not a packet but an Ethernet frame. Frames are analogous
to packets (having both a header and a data portion) but are sized to be efficient with
particular hardware. IP packets are encapsulated within frames, where the IP packet
fits within the Data part of the frame. A frame may, however, be too small to hold
an entire IP packet, in which case the IP packet is split into several smaller packets.
This group of smaller IP packets is then given an identifying number, and each smaller
packet will then have the Identification field set with that number and the Offset field
set to indicate its position within the actual packet. On the other side of the connection,
the destination machine will reconstruct a packet from all the smaller subpackets that
have the same Identification field.

The convention for writing an IP address in human readable form is dotted dec-
imal notation like 152.2.254.81, where each number is a byte and is hence in the
range of 0 to 255. Hence the entire address space is in the range of 0.0.0.0 to
255.255,255.255. To further organize the assignment of addresses, each 32-bit ad-
dress is divided into two parts, a network and a host part of the address, as shown in
Figure 25.1.

248

25. Introduction to IP 25.2. Special IP Addresses

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

T T
Class A: |0| network part host part
1 1
T T
Class B: |10 network part host part
1 1
T T
Class C: |1/1/0 network part host part
1 1
[] [] []

Figure 25.1 IP address classes

The network part of the address designates the LAN, and the host part the par-
ticular machine on the LAN. Now, because it was unknown at the time of specification
whether there would one day be more LANs or more machines per LAN, three differ-
ent classes of address were created.

Class A addresses begin with the first bit of the network part set to 0 (hence, a
Class A address always has the first dotted decimal number less than 128). The next 7
bits give the identity of the LAN, and the remaining 24 bits give the identity of an actual
machine on that LAN. A Class B address begins with a 1 and then a 0 (first decimal
number is 128 through 191). The next 14 bits give the LAN, and the remaining 16
bits give the machine. Most universities, like the address above, are Class B addresses.
Lastly, Class C addresses start with a 1 1 0 (first decimal number is 192 through 223),
and the next 21 bits and then the next 8 bits are the LAN and machine, respectively.
Small companies tend use Class C addresses.

In practice, few organizations require Class A addresses. A university or large
company might use a Class B address but then would have its own further subdivi-
sions, like using the third dotted decimal as a department (bits 16 through 23) and the
last dotted decimal (bits 24 through 31) as the machine within that department. In this
way the LAN becomes a micro-Internet in itself. Here, the LAN is called a network and
the various departments are each called a subnet.

25.2 Special IP Addresses

Some special-purposes IP addresses are never used on the open Internet.
192.168.0.0 through 192.168.255.255 are private addresses perhaps used in-
side a local LAN that does not communicate directly with the Internet. 127.0.0.0
through 127.255.255.255 are used for communication with the localhost—that is,
the machine itself. Usually, 127.0.0. 1 is an IP address pointing to the machine itself.
Further, 172.16.0.0 through 172.31.255.255 are additional private addresses for
very large internal networks, and 10.0.0.0 through 10.255.255.255 are for even
larger ones.

249

25.3. Network Masks and Addresses 25. Introduction to IP

25.3 Network Masks and Addresses

Consider again the example of a university with a Class B address. It might
have an IP address range of 137.158.0.0 through 137.158.255.255. Assume
it was decided that the astronomy department should get 512 of its own IP ad-
dresses, 137.158.26.0 through 137.158.27.255. We say that astronomy has a
network address of 137.158.26.0. The machines there all have a network mask of
255.255.254.0. A particular machine in astronomy may have an IP address of
137.158.27.158. This terminology is used later. Figure 25.2 illustrates this example.

Dotted IP Binary
Netmask 255 . 255 .254 . 0 11111111 111111111111 1110 0000 0000
Network address 137 .158 . 26 . O 1000 1001 1001 1110 0001 1010 0000 0000
IP address 137 . 158 . 27 . 158 1000 1001 1001 1110 0001 1011 1001 1110
~———
——
Host part 0O . 0 . 1 .158 0000 0000 0000 0000 0000 0001 1001 1110

Figure 25.2 Dividing an address into network and host portions

254 Computers on a LAN

In this section we will use the term LAN to indicate a network of computers that are all
more or less connected directly together by Ethernet cables (this is common for small
businesses with up to about 50 machines). Each machine has an Ethernet card which is
referred to as et h0 throughout all command-line operations. If there is more than one
card on a single machine, then these are named eth0, ethl, eth2, etc., and are each
called a network interface (or just interface, or sometimes Ethernet port) of the machine.

LANs work as follows. Network cards transmit a frame to the LAN, and other
network cards read that frame from the LAN. If any one network card transmits a
frame, then all other network cards can see that frame. If a card starts to transmit a
frame while another card is in the process of transmitting a frame, then a clash is said
to have occurred, and the card waits a random amount of time and then tries again.
Each network card has a physical address of 48 bits called the hardware address (which
is inserted at the time of its manufacture and has nothing to do with IP addresses).
Each frame has a destination address in its header that tells what network card it is
destined for, so that network cards ignore frames that are not addressed to them.

Since frame transmission is governed by the network cards, the destination hard-
ware address must be determined from the destination IP address before a packet is
sent to a particular machine. This is done is through the Address Resolution Protocol

250

25. Introduction to IP 25.5. Contiguring Interfaces

(ARP). A machine will transmit a special packet that asks “What hardware address
is this IP address?” The guilty machine then responds, and the transmitting machine
stores the result for future reference. Of course, if you suddenly switch network cards,
then other machines on the LAN will have the wrong information, so ARP has time-
outs and re-requests built into the protocol. Try typing the command arp to get a list
of hardware address to IP mappings.

25.5 Configuring Interfaces

Most distributions have a generic way to configure your interfaces. Here, however, we
first look at a complete network configuration using only raw networking commands.

We first create a 1o interface. This is called the loopback device (and has nothing to
do with loopback block devices: /dev/1loop? files). The loopback device is an imagi-
nary network card that is used to communicate with the machine itself; for instance, if
you are telneting to the local machine, you are actually connecting via the loopback
device. The ifconfig (interface configure) command is used to do anything with
interfaces. First, run

/sbin/ifconfig lo down
/sbin/ifconfig eth0 down

to delete any existing interfaces, then run

{/sbin/ifconfig lo 127.0.0.1]

which creates the loopback interface.

Create the Ethernet interface with:

[/sbin/ifconfig eth0 192.168.3.9 broadcast 192.168.3.255 netmask 255.255,255.0]

The broadcast address is a special address that all machines respond to. It is usually
the first or last address of the particular network.

Now run

[/sbin/ifconfig]

to view the interfaces. The output will be

ethO Link encap:Ethernet HWaddr 00:00:E8:3B:2D:A2
inet addr:192.168.3.9 Bcast:192.168.3.255 Mask:255,255,255.,0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:1359 errors:0 dropped:0 overruns:0 frame:0
TX packets:1356 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:100

251

10

25.6. Configuring Routing 25. Introduction to IP

Interrupt:11 Base address:0xe400

lo Link encap:Local Loopback
inet addr:127.0.0.1 Mask:255.0.0.0
UP LOOPBACK RUNNING MTU:3924 Metric:1
RX packets:53175 errors:0 dropped:0 overruns:0 frame:0
TX packets:53175 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:0

which shows various interesting bits, like the 48-bit hardware address of the network
card (hex bytes 00:00:E8:3B:2D:A2).

25.6 Configuring Routing

The interfaces are now active. However, nothing tells the kernel what packets should
go to what interface, even though we might expect such behavior to happen on its own.
With UNIX, you must explicitly tell the kernel to send particular packets to particular
interfaces.

Any packet arriving through any interface is pooled by the kernel. The kernel
then looks at each packet’s destination address and decides, based on the destination,
where it should be sent. It doesn’t matter where the packet came from; once the kernel
has the packet, it’s what its destination address says that matters. It is up to the rest
of the network to ensure that packets do not arrive at the wrong interfaces in the first
place.

We know that any packet having the network address 127.777.777.7?? must
go to the loopback device (this is more or less a convention). The command,

[/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo]

adds a route to the network 127.0.0. 0, albeit an imaginary one.

The eth0 device can be routed as follows:

[/sbin/route add -net 192.168.3.0 netmask 255.255.255.0 ethO]

The command to display the current routes is

[/sbin/route -n]

(-n causes route to not print IP addresses as host names) with the following output:

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
192.168.3.0 0.0.0.0 255,255.,255.0 U 0 0 0 ethoO

252

25. Introduction to IP 25.6. Configuring Routing

This output has the meaning, “packets with destination address
127.0.0.0/255.0.0.0 “yThe notation network/mask is often used to denote ranges of IP
address™. must be sent to the loopback device,” and “packets with destination
address 192.168.3.0/255.255,255,0 must be sent to eth0.” Gateway is zero,
hence, is not set (see the following commands).

The routing table now routes 127. and 192.168.3. packets. Now we need
a route for the remaining possible IP addresses. UNIX can have a route that says to
send packets with particular destination IP addresses to another machine on the LAN,
from whence they might be forwarded elsewhere. This is sometimes called the gateway
machine. The command is:

/sbin/route add -net <network-address> netmask <netmask> gw \
<gateway-ip-address> <interface>

This is the most general form of the command, but it’s often easier to just type:

[/sbin/route add default gw <gateway-ip-address> <interface>

)

when we want to add a route that applies to all remaining packets. This route is called
the default gateway. default signifies all packets; it is the same as

/sbin/route add -net 0.0.0.0 netmask 0.0.0.0 gw <gateway-ip-address> \
<interface>

but since routes are ordered according to netmask, more specific routes are used in pref-
erence to less specific ones.

Finally, you can set your host name with:

[hostname cericon.cranzgot.co.za j

A summary of the example commands so far is

/sbin/ifconfig lo down

/sbin/ifconfig eth0 down

/sbin/ifconfig lo 127.0.0.1

/sbin/ifconfig eth0 192.168.3.9 broadcast 192.168.,3.255 netmask 255.255.255.0
/sbin/route add -net 127.0.0.0 netmask 255.0.0.0 lo

/sbin/route add -net 192.168.3.0 netmask 255.255.255.0 ethO

/sbin/route add default gw 192.168.3.254 ethO

hostname cericon.cranzgot.co.za

Although these 7 commands will get your network working, you should not do such a
manual configuration. The next section explains how to configure your startup scripts.

253

25.7. Configuring Startup Scripts 25. Introduction to IP

25.7 Configuring Startup Scripts

Most distributions will have a modular and extensible system of startup scripts that
initiate networking.

25.7.1 RedHat networking scripts

RedHat systems contain the directory /etc/sysconfig/, which contains configura-
tion files to automatically bring up networking.

The file /etc/sysconfig/network-scripts/ifcfg-eth0 contains:

DEVICE=eth0
IPADDR=192.168.3.9
NETMASK=255.255.255.0
NETWORK=192.168.3.0
BROADCAST=192.168.3.255
ONBOOT=yes

The file /etc/sysconfig/network contains:

NETWORKING=yes
HOSTNAME=cericon.cranzgot.co.za
GATEWAY=192.168.3.254

You can see that these two files are equivalent to the example configuration done
above. These two files can take an enormous number of options for the various proto-
cols besides IP, but this is the most common configuration.

The file /etc/sysconfig/network-scripts/ifcfg-lo for the loopback
device will be configured automatically at installation; you should never need to edit
it.

To stop and start networking (i.e., to bring up and down the interfaces and rout-
ing), type (alternative commands in parentheses):

/etc/init.d/network stop
(/etc/rc.d/init.d/network stop)
/etc/init.d/network start
(/etc/rc.d/init.d/network start)

which will indirectly read your /etc/sysconfig/ files.

You can add further files, say, ifcfg-ethl (under
/etc/sysconfig/network-scripts/) for a secondary Ethernet device. For
example, i fcfg—ethl could contain

254

25. Introduction to IP 25.7. Configuring Startup Scripts

DEVICE=ethl
IPADDR=192.168.4.1
NETMASK=255,255.,255.0
NETWORK=192.168.4.0
BROADCAST=192,168.4.255
ONBOOT=yes

and then run echo "1" > /proc/sys/net/ipv4/ip_forward to enable packet
forwarding between your two interfaces.

25.7.2 Debian networking scripts

Debian(@, on the other hand, has a directory /etc/network/ containing a file
/etc/network/interfaces.\NASuﬂmL[kbmn@Hmsanaﬂandckanapp@mhf\(Seeaho
interfaces(5).) For the same configuration as above, this file would contain:

iface lo inet loopback

iface eth0 inet static
address 192,168.3.9
netmask 255.255.255.0
gateway 192.168,3.254

The file /etc/network/options contains the same forwarding (and some
other) options:

ip_forward=no
spoofprotect=yes
syncookies=no

To stop and start networking (i.e., bring up and down the interfaces and routing),

type

/etc/init.d/networking stop
/etc/init.d/networking start

which will indirectly read your /etc/network/interfaces file.

Actually, the /etc/init.d/networking script merely runs the ifup and 1 f-
down commands. See i fup(8). You can alternatively run these commands directly for
finer control.

We add further interfaces similar to the RedHat example above by appending to
the /etc/network/interfaces file. The Debian(© equivalent is,

255

25.8. Complex Routing — a Many-Hop Example 25. Introduction to IP

iface lo inet loopback

iface eth0 inet static
address 192,168.3.9
netmask 255.255.255.0
gateway 192.168.3.254

iface ethl inet static
address 192.168.4.1
netmask 255.255,255.0

and then set ip_forward=yes in your /etc/network/options file.

Finally, whereas RedHat sets its host name from the line HOSTNAME=...
in /etc/sysconfig/network, Debian(© sets it from the contents of the file
/etc/hostname, which, in the present case, would contain just

[cericon.cranzgot.co.za]

25.8 Complex Routing — a Many-Hop Example

Consider two distant LANs that need to communicate. Two dedicated machines, one
on each LAN, are linked by some alternative method (in this case, a permanent serial
line), as shown in Figure 25.3.

This arrangement can be summarized by five machines X, A, B, C, and D. Machines X,
A, and B form LAN 1 on subnet 192.168.1.0/26. Machines C and D form LAN 2
onsubnet 192.168.1.128/26. Note how we use the “/26” to indicate that only the
first 26 bits are network address bits, while the remaining 6 bits are host address bits.
This means that we can have at most 26 = 64 IP addresses on each of LAN 1 and 2.
Our dedicated serial link comes between machines B and C.

Machine X has IP address 192.168.1.1. This machine is the gateway to the
Internet. The Ethernet port of machine B is simply configured with an IP address
of 192.168.1.2 with a default gateway of 192.168.1.1. Note that the broadcast
addressis 192.168.1. 63 (the last 6 bits set to 1).

The Ethernet port of machine C is configured with an IP address of
192.168.1.129. No default gateway should be set until serial line is configured.

We will make the network between B and C subnet 192.168.1.192/26. Itis
effectively a LAN on its own, even though only two machines can ever be connected.
Machines B and C will have IP addresses 192.168.1.252 and 192.168.1.253,
respectively, on their facing interfaces.

256

25. Introduction to IP 25.8. Complex Routing — a Many-Hop Example

g £ d

— 192.168.1.135 f—_—

(|
| l:| 192.168.1.128/26 l:D|

192.168.1.253

192.168.1.192/26

192.168.1.252
{——

r g3 £ d

192.168.1.2

192.168.1.0/26

To Internet

Figure 25.3 Two remotely connected networks

This is a real-life example with an unreliable serial link. To keep the link up
requires pppd and a shell script to restart the link if it dies. The pppd program is
covered in Chapter 41. The script for Machine B is:

#!/bin/sh
while true ; do
pppd lock local mru 296 mtu 296 nodetach nocrtscts nocdtrcts \
192,168.1.252:192,168.1.253 /dev/ttyS0O 115200 noauth \
lcp-echo-interval 1 lcp-echo-failure 2 lcp-max-terminate 1 lcp-restart 1
done

Note that if the link were an Ethernet link instead (on a second Ethernet card), and/or
a genuine LAN between machines B and C (with subnet 192.168.1.252/26), then
the same script would be just

/sbin/ifconfig ethl 192.168.1.252 broadcast 192.168.1.255 netmask \
255,255,255.192

in which case all “ppp0” would change to “eth1” in the scripts that follow.

257

10

15

25.8. Complex Routing — a Many-Hop Example 25. Introduction to IP

Routing on machine B is achieved with the following script, provided the link is
up. This script must be executed whenever pppd has negotiated the connection and
can therefore be placed in the file /et c/pppd/ip—up, which pppd executes automat-
ically as soon as the ppp0 interface is available:

/sbin/route del default

/sbin/route add -net 192.168.1.192 netmask 255.255.255.192 dev ppp0
/sbin/route add -net 192.168.1.128 netmask 255.255.255.192 gw 192.,168.,1.253
/sbin/route add default gw 192.168.1.1

echo 1 > /proc/sys/net/ipv4d/ip_forward

Our full routing table and interface list for machine B then looks like this “RedHat
6 likes to add (redundant) explicit routes to each device. These may not be necessary on your system™\:

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.2 0.0.0.0 255,255,255,255 UH 0 0 0 ethoO
192.168.1.253 0.0.0.0 255,255,255,255 UH 0 0 0 pppO
192.168.1.0 0.0.0.0 255,255,255,192 U 0 0 0 ethO
192.168.1.192 0.0.0.0 255,255,255,192 U 0 0 0 pppO
192.168.1.128 192.168.1.253 255,255,255,192 UG 0 0 0 ppp0
127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 ethO
ethO Link encap:Ethernet HWaddr 00:A0:24:75:3B:69

inet addr:192.168.1.2 Bcast:192.168.1.63 Mask:255,255,255,192
lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0
pprp0 Link encap:Point-to-Point Protocol

inet addr:192.168.1.252 P-t-P:192.168.1.253 Mask:255.255.255,255

On machine C we can similarly run the script,

#!/bin/sh
while true ; do
pppd lock local mru 296 mtu 296 nodetach nocrtscts nocdtrcts \
192,168.1.253:192,168.1.252 /dev/ttyS0O 115200 noauth \
lcp-echo-interval 1 lcp-echo-failure 2 lcp-max-terminate 1 lcp-restart 1
done

and then create routes with

/sbin/route del default
/sbin/route add -net 192.168.1.192 netmask 255,255.255.192 dev ppp0
/sbin/route add default gw 192.168,1,252

echo 1 > /proc/sys/net/ipv4/ip_forward

258

15

25. Introduction to IP 25.9. Interface Aliasing — Many IPs on One Physical Card

Our full routing table for machine C then looks like:

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.129 0.0.0.0 255,255.255.,255 UH 0 0 0 ethoO
192.168.1.252 0.0.0.0 255,255,255,255 UH 0 0 0 pppO
192.168.1.192 0.0.0.0 255,255,255,192 U 0 0 0 pppO
192.168.1.128 0.0.0.0 255,255,255,192 U 0 0 0 ethoO
127.0.0.0 0.0.0.0 255,0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.252 0.0.0.0 UG 0 0 0 pppO
ethO Link encap:Ethernet HWaddr 00:A0:CC:D5:D8:A7

inet addr:192.168.1.129 Bcast:192,.168.1.191 Mask:255,255,255,192
lo Link encap:Local Loopback

inet addr:127.0.0.1 Mask:255.0.0.0
pprpo Link encap:Point-to-Point Protocol

inet addr:192.168.1.253 P-t-P:192.168.1.252 Mask:255.255,.255,255

Machine D can be configured like any ordinary machine on a LAN. It just sets its
default gateway to 192.168.1.129. Machine A, however, has to know to send pack-
ets destined for subnet 192.168.1.128/26 through machine B. Its routing table has
an extra entry for the 192.168.1.128/26 LAN. The full routing table for machine A
is:

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface
192.168.1.0 0.0.0.0 255.,255.255.192 U 0 0 0 ethO
192.168.1.128 192.168.1.2 255,255.255.192 UG 0 0 0 ethO
127.0.0.0 0.0.0.0 255.,0.0.0 U 0 0 0 lo
0.0.0.0 192.168.1.1 0.0.0.0 UG 0 0 0 ethO

To avoid having to add this extra route on machine A, you can instead add the
same route on machine X. This may seem odd, but all that this means is that packets
originating from A destined for LAN 2 first try to go through X (since A has only one
route), and are then redirected by X to go through B.

The preceding configuration allowed machines to properly send packets between
machines A and D and out through the Internet. One caveat: ping sometimes did not
work even though telnet did. This may be a peculiarity of the kernel version we
were using, =shrugs+.

25.9 Interface Aliasing — Many IPs on One Physical
Card

(The file /usr/src/linux/Documentation/networking/alias.txt contains
the kernel documentation on this.)

259

25.10. Diagnostic Utilities 25. Introduction to IP

If you have one network card which you would like to double as several different
IP addresses, you can. Simply name the interface eth0:n where n is from 0 to some
large integer. You can use ifconfig as before as many times as you like on the same
network card—

/sbin/ifconfig eth0:0 192.168.4.1 broadcast 192.168.4.255 netmask 255.255,255.0
/sbin/ifconfig eth0:1 192.168.5.1 broadcast 192.168.5.255 netmask 255.255.255.0
/sbin/ifconfig eth0:2 192.,168.6.1 broadcast 192.168.6.255 netmask 255,255,255.0

—in addition to your regular eth0 device. Here, the same interface can communicate
to three LANs having networks 192.168.4.0, 192.168.5.0,and 192.168.6.0.
Don’t forget to add routes to these networks as above.

25.10 Diagnostic Utilities

It is essential to know how to inspect and test your network to resolve problems. The
standard UNIX utilities are explained here.

25.10.1 ping

The ping command is the most common network utility. IP packets come in three
types on the Internet, represented in the Type field of the IP header: UDP, TCP, and
ICMP. (The first two, discussed later, represent the two basic methods of communica-
tion between two programs running on different machines.) ICMP stands for Internet
Control Message Protocol and is a diagnostic packet that is responded to in a special way.
Try:

Eﬁing metalab.unc.edu]

or specify some other well-known host. You will get output like:

PING metalab.unc.edu (152.19.254,81) from 192.168.3.9 : 56(84) bytes of data.
64 bytes from 152.19.254,81: icmp_seg=0 ttl=238 time=1059.1 ms
64 bytes from 152,19.254.,81: icmp_seqg=1 ttl=238 time=764.9 ms
64 bytes from 152,19.254.81: icmp_seqg=2 ttl=238 time=858.8 ms
64 bytes from 152,19.254.81: icmp_seg=3 ttl=238 time=1179.9 ms
64 bytes from 152,19.254.81: icmp_seg=4 ttl=238 time=986.6 ms
64 bytes from 152,19.254.81: icmp_seg=5 ttl=238 time=1274.3 ms
64 bytes from 152,19.254.81: icmp_seqg=6 ttl=238 time=930.7 ms

What is happening is that ping is sending ICMP packets to metalab.unc.edu,
which is automatically responding with a return ICMP packet. Being able to ping
a machine is often the acid test of whether you have a correctly configured and work-
ing network interface. Note that some sites explicitly filter out ICMP packets, so, for
example, ping cnn.com won't work.

260

10

15

20

25. Introduction to IP 25.10. Diagnostic Utilities

ping sends a packet every second and measures the time it takes to receive the
return packet—Ilike a submarine sonar “ping.” Over the Internet, you can get times in
excess of 2 seconds if the place is remote enough. On a local LAN this delay will drop
to under a millisecond.

If ping does not even get to the line PING metalab.unc.edu..., it means that
ping cannot resolve the host name. You should then check that your DNS is set up
correctly—see Chapter 27. If ping gets to that line but no further, it means that the
packets are not getting there or are not getting back. In all other cases, ping gives an
error message reporting the absence of either routes or interfaces.

25.10.2 traceroute

traceroute is a rather fascinating utility to identify where a packet has been. It uses
UDP packets or, with the -I option, ICMP packets to detect the routing path. On my

[traceroute metalab.unc.edu

machine,

gives

traceroute to metalab.unc.edu (152.19.254.81), 30 hops max, 38 byte packets

1 192.168.3.254 (192.168.3.254) 1.197 ms 1.085 ms 1.050 ms

192.168.254.5 (192.168.254.5) 45.165 ms 45.314 ms 45.164 ms

cranzgate (192.168.2.254) 48.205 ms 48.170 ms 48.074 ms

cranzposix (160.124.182.254) 46.117 ms 46,064 ms 45,999 ms
cismpjhb.posix.co.za (160.124,255.193) 451.886 ms 71.549 ms 173.321 ms
cisapl.posix.co.za (160.124,112.1) 274,834 ms 147,251 ms 400.654 ms
saix.posix.co.za (160.124.255.6) 187.402 ms 325.030 ms 628.576 ms
ndf-corel.gt.saix.net (196.25.253.1) 252.558 ms 186.256 ms 255.805 ms

9 ny-core.saix.net (196.25.0.238) 497.273 ms 454.531 ms 639.795 ms

10 Dbordercoreé-serial5-0-0-26.WestOrange.cw.net (166.48.144.105) 595.755 ms 595.174 ms *
11 corerouterl.WestOrange.cw.net (204.70.9.138) 490.845 ms 698.483 ms 1029.369 ms
12 core6.Washington.cw.net (204.70.4.113) 580.971 ms 893.481 ms 730.608 ms

13 204.70.10.182 (204.70.10.182) 644.070 ms 726.363 ms 639.942 ms

14 mae-brdr-0l.inet.gwest.net (205.171.4.201) 767.783 ms * *

15 % % *

16 * wdc-core-03.inet.gwest.net (205.171.24.69) 779.546 ms 898.371 ms

17 atl-core-02.inet.gwest.net (205.171.5.243) 894,553 ms 689.472 ms *

18 atl-edge-05.inet.gwest.net (205.171.21.54) 735.810 ms 784.461 ms 789.592 ms
19 * * *

20 * * unc-gw.ncren.net (128.109.190.2) 889.257 ms

21 unc-gw.ncren.net (128.109.190.2) 646.569 ms 780.000 ms *

22 * helios.oit.unc.edu (152.2.22.3) 600.558 ms 839.135 ms

® L0 e W N

You can see that there were twenty machines “This is actually a good argument for why
“enterprise”-level web servers have no use in non-U.S. markets: there isn’t even the network speed to load
such servers, thus making any kind of server speed comparisons superfluous™\ (or hops) between
mine and metalab.unc.edu.

25.10.3 tcpdump

tcpdump watches a particular interface for all the traffic that passes it—that is, all the
traffic of all the machines connected to the same hub (also called the segment or network
segment). A network card usually grabs only the frames destined for it, but t cpdump

261

25.10. Diagnostic Utilities 25. Introduction to IP

puts the card into promiscuous mode, meaning that the card is to retrieve all frames
regardless of their destination hardware address. Try

[tcpdump -n -N -f -i ethO]

tcpdump is also discussed in Section 41.5. Deciphering the output of t cpdump is left
for now as an exercise for the reader. More on the tcp part of t codump in Chapter 26.

262

Chapter 26

Transmission Control Protocol
(TCP) and User Datagram
Protocol (UDP)

In the previous chapter we talked about communication between machines in a generic
sense. However, when you have two applications on opposite sides of the Atlantic
Ocean, being able to send a packet that may or may not reach the other side is not
sufficient. What you need is reliable communication.

Ideally, a programmer wants to be able to establish a link to a remote machine
and then feed bytes in one at a time and be sure that the bytes are being read on the
other end, and vice-versa. Such communication is called reliable stream communication.

If your only tools are discrete, unreliable packets, implementing a reliable, con-
tinuous stream is tricky. You can send single packets and then wait for the remote
machine to confirm receipt, but this approach is inefficient (packets can take a long
time to get to and from their destination)—you really want to be able to send as many
packets as possible at once and then have some means of negotiating with the remote
machine when to resend packets that were not received. What TCP (Transmission Con-
trol Protocol) does is to send data packets one way and then acknowledgment packets the
other way, saying how much of the stream has been properly received.

We therefore say that TCP is implemented on top of IP. This is why Internet com-
munication is sometimes called TCP/IP.

TCP communication has three stages: negotiation, transfer, and detachment. ~This
is all my own terminology. This is also somewhat of a schematic representation™\

Negotiation The client application (say, a web browser) first initiates the connection
by using a C connect () (see connect(2)) function. This causes the kernel to

263

26.1. The TCP Header 26. TCP and UDP

send a SYN (SYNchronization) packet to the remote TCP server (in this case, a
web server). The web server responds with a SYN-ACK packet (ACKnowledge),
and finally the client responds with a final SYN packet. This packet negotiation
is unbeknown to the programmer.

Transfer: The programmer will use the send () (send(2)) and recv () (recv(2)) C

function calls to send and receive an actual stream of bytes. The stream of bytes
will be broken into packets, and the packets sent individually to the remote ap-
plication. In the case of the web server, the first bytes sent would be the line
GET /index.html HTTP/1l.0<CR><NL><CR><NL>. On the remote side, re-
ply packets (also called ACK packets) are sent back as the data arrives, indicating
whether parts of the stream went missing and require retransmission. Commu-
nication is full-duplex—meaning that there are streams in both directions—both
data and acknowledge packets are going both ways simultaneously.

Detachment: The programmer will use the C function call shutdown() and

close () (see shutdown () and close(2)) to terminate the connection. A
FIN packet will be sent and TCP communication will cease.

26.1 The TCP Header

TCP packets are obviously encapsulated within IP packets. The TCP packet is inside the
Data begins at... part of the IP packet. A TCP packet has a header part and a data
part. The data part may sometimes be empty (such as in the negotiation stage).

Table 26.1 shows the full TCP/IP header.

Table 26.1 Combined TCP and IP header

| Bytes (IP) | Description |
0 Bits 0-3: Version, Bits 4-7: Internet Header Length (IHL)
1 Type of service (TOS)
2-3 Length
4-5 Identification
67 Bits 0-3: Flags, bits 4-15: Offset
8 Time to live (TTL)
9 Type
10-11 Checksum
12-15 Source IP address
16-19 Destination IP address
20-THL*4-1 Options + padding to round up to four bytes

Bytes (TCP)

Description

continues...

264

26. TCP and UDP 26.2. A Sample TCP Session

Table 26.1 (continued)

0-1 Source port

2-3 Destination port

4-7 Sequence number

8-11 Acknowledgment number

12 Bits 0-3: number of bytes of additional TCP options / 4
13 Control

14-15 Window

16-17 Checksum

18-19 Urgent pointer

20—(20 + options * 4) | Options + padding to round up to four bytes

] TCP data begins at IHL * 4 + 20 + options * 4 and ends at Length - 1 \

The minimum combined TCP/IP header is thus 40 bytes.

With Internet machines, several applications often communicate simultaneously.
The Source port and Destination port fields identify and distinguish individual
streams. In the case of web communication, the destination port (from the clients point
of view) is port 80, and hence all outgoing traffic will have the number 80 filled in
this field. The source port (from the client’s point of view) is chosen randomly to any
unused port number above 1024 before the connection is negotiated; these, too, are
filled into outgoing packets. No two streams have the same combinations of source
and destination port numbers. The kernel uses the port numbers on incoming packets
to determine which application requires those packets, and similarly for the remote
machine.

Sequence number is the offset within the stream that this particular packet of
data belongs to. The Acknowledge number is the point in the stream up to which all
data has been received. Control is various other flag bits. Window is the maximum
amount that the receiver is prepared to accept. Checksum is used to verify data in-
tegrity, and Urgent pointer is for interrupting the stream. Data needed by extensions
to the protocol are appended after the header as options.

26.2 A Sample TCP Session

It is easy to see TCP working by using telnet. You are probably familiar with using
telnet to log in to remote systems, but telnet is actually a generic program to con-
nect to any TCP socket as we did in Chapter 10. Here we will try connect to cnn. com’s
web page.

We first need to get an IP address of cnn . com:

265

10

15

20

25

30

26.2. A Sample TCP Session 26. TCP and UDP

[root@cericon]# host cnn,com
cnn.com has address 207.25.71.20

Now, in one window we run

[root@cericon]# tcpdump \

’(src 192,168.3.9 and dst 207.25.71.20) or (src 207.25,71.20 and dst 192,168.3.9)’
Kernel filter, protocol ALL, datagram packet socket

tcpdump: listening on all devices

which says to list all packets having source (src) or destination (dst) addresses of
either us or CNN.

Then we use the HTTP protocol to grab the page. Type in the HTTP command
GET / HTTP/1.0 and then press - twice (as required by the HTTP protocol). The
first and last few lines of the sessions are shown below:

[root@cericon root]# telnet 207.25.71.20 80
Trying 207.25.71.20...

Connected to 207.25.71.20.

Escape character is ’"7]’.

GET / HTTP/1.0

HTTP/1.0 200 OK

Server: Netscape-Enterprise/2.01

Date: Tue, 18 Apr 2000 10:55:14 GMT

Set-cookie: CNNid=cf19472c-23286-956055314-2; expires=Wednesday, 30-Dec-2037 16:00:00 GMT;
path=/; domain=.cnn.com

Last-modified: Tue, 18 Apr 2000 10:55:14 GMT

Content-type: text/html

<HTML>
<HEAD>
<TITLE>CNN.com</TITLE>
<META http-equiv="REFRESH" content="1800">
<!--CSSDATA:956055234——>
<SCRIPT src="/virtual/2000/code/main.js" language="javascript"></SCRIPT>
<LINK rel="stylesheet" href="/virtual/2000/style/main.css" type="text/css">
<SCRIPT language="javascript" type="text/javascript">
<l-=//
if ((navigator.platform=='"MacPPC’)&& (navigator.ap
</BODY>
</HTML>

Connection closed by foreign host.

The above commands produce the front page of CNN’s web site in raw HTML.
This is easy to paste into a file and view off-line.

In the other window, t cpdump is showing us what packets are being exchanged.
tcpdump nicely shows us host names instead of IP addresses and the letters www in-
stead of the port number 80. The local “random” port in this case was 4064.

266

10

15

20

25

30

35

40

45

50

55

60

65

26. TCP and UDP 26.2. A Sample TCP Session

[root@cericon]# tcpdump \

’(src 192,168.3.9 and dst 207.25.71.20) or (src 207.25,71.20 and dst 192,168.3.9)’
Kernel filter, protocol ALL, datagram packet socket

tcpdump: listening on all devices

12:52:35.467121 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn,com.www:

S 2463192134:2463192134(0) win 32120 <mss 1460, sackOK,timestamp 154031689 0,nop,wscale 0

12:52:35,964703 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

S 4182178234:4182178234(0) ack 2463192135 win 10136 <nop,nop,timestamp 1075172823 154031

12:52:35.964791 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn.,com.www:

. 1:1(0) ack 1 win 32120 <nop,nop,timestamp 154031739 1075172823> (DF)
12:52:46,413043 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn,com,www:

P 1:17(16) ack 1 win 32120 <nop,nop,timestamp 154032784 1075172823> (DF)
12:52:46.908156 eth0 < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

. 1:1(0) ack 17 win 10136 <nop,nop,timestamp 1075173916 154032784>
12:52:49,259870 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn,com,www:

P 17:19(2) ack 1 win 32120 <nop,nop,timestamp 154033068 1075173916> (DF)
12:52:49.886846 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

P 1:278(277) ack 19 win 10136 <nop,nop,timestamp 1075174200 154033068>
12:52:49,887039 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn,com.,www:

. 19:19(0) ack 278 win 31856 <nop,nop,timestamp 154033131 1075174200> (DF)
12:52:50.053628 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

. 278:1176(898) ack 19 win 10136 <nop,nop,timestamp 1075174202 154033068>
12:52:50,160740 eth0 < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

P 1176:1972(796) ack 19 win 10136 <nop,nop,timestamp 1075174202 154033068>
12:52:50.220067 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn,com,www:

. 19:19(0) ack 1972 win 31856 <nop,nop,timestamp 154033165 1075174202> (DF)
12:52:50.824143 eth0 < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

. 1972:3420(1448) ack 19 win 10136 <nop,nop,timestamp 1075174262 154033131>
12:52:51.,021465 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

. 3420:4868(1448) ack 19 win 10136 <nop,nop,timestamp 1075174295 154033165>

12:53:13.856919 ethO > cericon.cranzgot.co.za.4064 > wwwl,cnn,com,www:
. 19:19(0) ack 53204 win 30408 <nop,nop,timestamp 154035528 1075176560> (DF)
12:53:14.722584 eth0 < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
. 53204:54652(1448) ack 19 win 10136 <nop,nop,timestamp 1075176659 154035528>
12:53:14.,722738 eth0 > cericon.cranzgot.co.za.4064 > wwwl.cnn.com.www:
. 19:19(0) ack 54652 win 30408 <nop,nop,timestamp 154035615 1075176659> (DF)
12:53:14.912561 ethO < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
54652:56100(1448) ack 19 win 10136 <nop,nop,timestamp 1075176659 154035528>
12:53:14.912706 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn,com,www:
. 19:19(0) ack 58500 win 30408 <nop,nop,timestamp 154035634 1075176659> (DF)
12:53:15.706463 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
. 58500:59948(1448) ack 19 win 10136 <nop,nop,timestamp 1075176765 154035634>
12:53:15.896639 eth0 < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
. 59948:61396(1448) ack 19 win 10136 <nop,nop,timestamp 1075176765 154035634>
12:53:15.896791 ethO > cericon.cranzgot.co.za.4064 > wwwl.,cnn,com,www:
. 19:19(0) ack 61396 win 31856 <nop,nop,timestamp 154035732 1075176765> (DF)
12:53:16.678439 eth0 < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
. 61396:62844(1448) ack 19 win 10136 <nop,nop,timestamp 1075176864 154035732>
12:53:16.867963 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
. 62844:64292(1448) ack 19 win 10136 <nop,nop,timestamp 1075176864 154035732>
12:53:16.868095 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn.com.,www:
. 19:19(0) ack 64292 win 31856 <nop,nop,timestamp 154035829 1075176864> (DF)
12:53:17.521019 ethO < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:
FP 64292:65200(908) ack 19 win 10136 <nop,nop,timestamp 1075176960 154035829>
12:53:17.521154 eth0 > cericon.cranzgot.co.za.4064 > wwwl.cnn.com.,www:
. 19:19(0) ack 65201 win 31856 <nop,nop,timestamp 154035895 1075176960> (DF)
12:53:17.523243 ethO0 > cericon.cranzgot.co.za.4064 > wwwl.cnn.com,www:
F 19:19(0) ack 65201 win 31856 <nop,nop,timestamp 154035895 1075176960> (DF)
12:53:20.410092 ethO > cericon.cranzgot.co.za.4064 > wwwl.cnn.com.www:
F 19:19(0) ack 65201 win 31856 <nop,nop,timestamp 154036184 1075176960> (DF)
12:53:20.940833 eth0O < wwwl.cnn.com.www > cericon.cranzgot.co.za.4064:

267

26.3. User Datagram Protocol (UDP) 26. TCP and UDP

. 65201:65201(0) ack 20 win 10136 <nop,nop,timestamp 1075177315 154035895>

103 packets received by filter

The preceding output requires some explanation: Line 5, 7, and 9 are the nego-
tiation stage. t cpdump uses the format <Sequence number>:<Sequence number
+ data length>(<data length>) on each line to show the context of the packet
within the stream. Sequence number, however, is chosen randomly at the outset, so
tcpdump prints the relative sequence number after the first two packets to make it
clearer what the actual position is within the stream. Line 11 is where I pressed Enter
the first time, and Line 15 was Enter with an empty line. The “ack 19”s indicates
the point to which CNN’s web server has received incoming data; in this case we only
ever typed in 19 bytes, hence the web server sets this value in every one of its outgoing
packets, while our own outgoing packets are mostly empty of data.

Lines 61 and 63 are the detachment stage.

More information about the t cpdump output can be had from t cpdump(8) under
the section TCP Packets.

26.3 User Datagram Protocol (UDP)

You don’t always need reliable communication.

Sometimes you want to directly control packets for efficiency, or because you
don’t really mind if packets get lost. Two examples are name server communications,
for which single packet transmissions are desired, or voice transmissions for which
reducing lag time is more important than data integrity. Another is NFS (Network File
System), which uses UDP to implement exclusively high bandwidth data transfer.

With UDP the programmer sends and receives individual packets, again encap-
sulated within IP. Ports are used in the same way as with TCP, but these are merely
identifiers and there is no concept of a stream. The full UDP/IP header is listed in
Table 26.2.

Table 26.2 Combined UDP and IP header

| Bytes (IP) | Description \
0 bits 0-3: Version, bits 4-7: Internet Header Length (IHL)
1 Type of service (TOS)
2-3 Length
4-5 Identification
67 bits 0-3: Flags, bits 4-15: Offset

continues...

268

10

26. TCP and UDP 26.4. /etc/services File

Table 26.2 (continued)

8 Time to live (TTL)
9 Type

10-11 Checksum

12-15 Source IP address

16-19
20-(IHL*4-1)
Bytes (UDP)

Destination IP address
Options + padding to round up to four bytes

| Description

0-1 Source port

2-3 Destination port
4-5 Length

67 Checksum

] UDP data begins at IHL * 4 + 8 and ends at Length - 1

26.4 /etc/services File

Various standard port numbers are used exclusively for particular types of services.
Port 80 is for web as shown earlier. Port numbers 1 through 1023 are reserved for such
standard services and each is given a convenient textual name.

All services are defined for both TCP as well as UDP, even though there is, for
example, no such thing as UDP FTP access.

Port numbers below 1024 are used exclusively for root uid programs such as
mail, DNS, and web services. Programs of ordinary users are not allowed to bind to
ports below 1024. “,Port binding is where a program reserves a port for listening for an incoming
connection, as do all network services. Web servers, for example, bind to port 80~ The place where
these ports are defined is in the /etc/services file. These mappings are mostly
for descriptive purposes—programs can look up port names from numbers and visa

versa. The /etc/services file has nothing to do with the availability of a service.

Here is an extract of the /etc/services.

tcpmux 1/tcp # TCP port service multiplexer
echo 7/tcp

echo 7/udp

discard 9/tcp sink null

discard 9/udp sink null

systat 11/tcp users

daytime 13/tcp

daytime 13/udp

netstat 15/tcp

gotd 17/tcp quote

msp 18/tcp # message send protocol
msp 18/udp # message send protocol

269

15

20

25

30

35

26.5. Encrypting and Forwarding TCP

26. TCP and UDP

ftp-data 20/tcp

ftp 21/tcp

fsp 21/udp fspd

ssh 22/tcp

ssh 22 /udp

telnet 23/tcp

smtp 25/tcp mail

time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource
nameserver 42 /tcp name
whois 43/tcp nicname
domain 53/tcp nameserver
domain 53/udp nameserver
mtp 57/tcp

bootps 67/tcp

bootps 67/udp

bootpc 68/tcp

bootpc 68/udp

tftp 69/udp

gopher 70/tcp

gopher 70/udp

rije 77/tcp netrjs
finger 79/tcp

WWW 80/tcp http

WWW 80/udp

SSH Remote Login Protocol
SSH Remote Login Protocol

resource location
IEN 116

name-domain server

deprecated
BOOTP server

BOOTP client

Internet Gopher

WorldWideWeb HTTP
HyperText Transfer Protocol

26.5 Encrypting and Forwarding TCP

The TCP stream can easily be reconstructed by anyone listening on a wire who happens
to see your network traffic, so TCP is known as an inherently insecure service. We
would like to encrypt our data so that anything captured between the client and server
will appear garbled. Such an encrypted stream should have several properties:

1. It should ensure that the connecting client really is connecting to the server in
question. In other words it should authenticate the server to ensure that the

server is not a Trojan.

2. It should prevent any information being gained by a snooper. This means that
any traffic read should appear cryptographically garbled.

3. It should be impossible for a listener to modify the traffic without detection.

The above is relatively easily accomplished with at least two packages. Take the
example where we would like to use POP3 to retrieve mail from a remote machine.
First, we can verify that POP3 is working by logging in on the POP3 server. Run a
telnet to port 110 (i.e., the POP3 service) as follows:

26. TCP and UDP 26.5. Encrypting and Forwarding TCP

telnet localhost 110
Connected to localhost.localdomain.

Escape character is ’"]’'.
+OK POP3 localhost.localdomain v7.64 server ready
QUIT

+OK Sayonara
Connection closed by foreign host.

For our first example, we use the OpenSSH package. We can initialize and run
the sshd Secure Shell daemon if it has not been initialized before. The following com-
mands would be run on the POP3 server:

ssh-keygen -b 1024 -f /etc/ssh/ssh_host_key -g -N 7’
ssh-keygen -d -f /etc/ssh/ssh_host_dsa_key -g -N '/
sshd

To create an encrypted channel shown in Figure 26.1, we use the ssh client login
program in a special way. We would like it to listen on a particular TCP port and then
encrypt and forward all traffic to the remote TCP port on the server. This is known as
(encrypted) port forwarding. On the client machine we choose an arbitrary unused port
to listen on, in this case 12345:

ssh -C -c arcfour -N -n -2 -L 12345:<pop3-server.doma.in>:110 \
<pop3-server,doma.in> -1 <user> -v

where <user> is the name of a shell account on the POP3 server. Finally, also on the
client machine, we run:

telnet localhost 12345
Connected to localhost.localdomain.

Escape character is ’7]’.
+OK POP3 localhost.localdomain v7.64 server ready
QUIT

+0OK Sayonara
Connection closed by foreign host.

Here we get results identical to those above, because, as far as the server is concerned,
the POP3 connection comes from a client on the server machine itself, unknowing of
the fact that it has originated from sshd, which in turn is forwarding from a remote
ssh client. In addition, the —C option compresses all data (useful for low-speed connec-
tions). Also note that you should generally never use any encryption besides arcfour
and SSH Protocol 2 (option -2).

The second method is the forward program of the mirrordir package. It has
a unique encryption protocol that does much of what OpenSSH can, although the pro-

271

26.5. Encrypting and Forwarding TCP 26. TCP and UDP

e N
Client
(telnet locahost 12345)

(ssh ... 12345:pop:110 pop) < 12345

L \ J

|

(sshd) Q 22/

POP3 Server

(ipop3d) < 110

Figure 26.1 Forwarding between two machines

tocol has not been validated by the community at large (and therefore should be used
with caution). On the server machine you canjust type secure-mcserv. On the client
run

forward <user>@<pop3-server.doma.in> <pop3-server.doma.in>:110 \
12345 --secure -z -K 1024

and then run telnet 12345 to test as before.

With forwarding enabled you can use any POP3 client as you normally would.
Be sure, though, to set your host and port addresses to localhost and 12345 within
your POP3 client.

This example can, of course, be applied to almost any service. Some services will
not work if they do special things like create reverse TCP connections back to the client
(for example, FTP). Your luck may vary.

272

Chapter 27

DNS and Name Resolution

We know that each computer on the Internet has its own IP address. Although this
address is sufficient to identify a computer for purposes of transmitting packets, it is
not particularly accommodating to people. Also, if a computer were to be relocated,
we would like to still identify it by the same name.

Hence, each computer is given a descriptive textual name. The basic textual name
of a machine is called the unqualified host name ~This is my own terminology™\ and is usu-
ally less than eight characters and contains only lowercase letters and numbers (and es-
pecially no